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Abstract. The review presents up-to-date information on the analytical solutions of the isotropic elasticity
boundary-value problems for straight wedge disclinations. The considered plane elasticity problems include
those for disclinations in uniform or two-phase cylinders, at a free surface of a half-space, and in a plate of
finite thickness.  Three-dimensional problems under analysis deal with wedge disclinations in a bulk sphere or
spherical layer or with the defects with the lines being normal to a free surface of a half-space or to surfaces
of the plate. Applications of the given solutions to explanation and prediction of various structure dependent
properties of solids are briefly discussed.
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1. INTRODUCTION

Nowadays, disclination approach demonstrates its im-
portance in the description of various phenomena in
condensed matter, for valuable reviews we address the
reader to Refs. [1-6]. It is good to know that the notation
‘disclination’ (or originally ‘disinclination’) were first
introduced by Frank in 1958 [7] when considering sin-
gular lines and points, i.e. defects, in the orientation
field of rod-like molecules of nematic liquid crystals. Simi-
larly, disclinations can be found in the nonuniform dis-
tributions of spins in magnetics of different type [2,3].

However, disclinations were explored much earlier
in mechanics of deformable solids when Volterra [8] in-
vestigated the stress-strain states of unloaded hollow
elastic cylinder with multi-value displacement field that
corresponds to a solid body motion. Volterra called such
states distorsions (Fr.), which result from the proce-
dure of the cutting of the cylinder in the plane parallel to
the cylinder axis, translating or rotating relatively the
surfaces of the cut, and then gluing the surface in the
final configuration. It is assumed that in the described
process (now known as Volterra process) the material

Fig. 1. Volterra process for the formation of negative wedge disclination in a hollow elastic cylinder. (a) Initial cylinder
with a cut; (b) relative rotation of the cut surfaces about cylinder axis with the formation of wedge-like gap; (c)
insertion of the sector of the material in the gap; (d) final configuration of disclinated cylinder with internal elastic
strains and mechanical stresses.

is inserted in the emerging empty spaces or taken out
from the regions of material overlap. Fig. 1 shows the
example of the realization of  Volterra process for a wedge
disclination. In this review article, we focus on such
type of Volterra distorsions only. For a sake of com-
pleteness, we have also to mention straight-linear twist
disclinations, screw dislocations, and edge dislocations
[1,4]. Wedge disclination is characterized by the axial
vector  – Frank vector, which is parallel to the cylin-
der axis. Its magnitude is disclination strength and is
equal to the angle of mutual rotation of the surfaces of
the cut in the process of the disclination formation. De-
pending on the sense of the cut surfaces rotation wedge
disclinations can be positive or negative: for the nega-
tive ones, the wedge of material is inserted during their
formation, whereas for positive ones, the wedge is ex-
tracted [4].

As it will be demonstrated below straight-linear
wedge disclinations possess remarkable properties:
when placed in an imaginary infinite elastic continuum
single disclination generates elastic strains and mechani-
cal stresses that diverge both in the defect core, and at
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large distance from a disclination line [4,6]. Such
unphysical features can be however corrected with re-
ducing disclination elastic fields either by self-screen-
ing in the disclination ensembles of alternating (plus
and minus) signs, or by external screening under the
influence by free surfaces of the finite size elastic bod-
ies [4,9,10]. The second type of screening for wedge
disclinations is considered in detail in this review.

In Section 2, we provide a necessary background on
the linear elasticity for defects in isotropic continuum
and discuss possible types of boundary conditions
used for the solution of elasticity boundary-value prob-
lems. Then, in Section 3, we give useful formulas for
mechanical stresses for a single wedge disclination in
an infinite elastically isotropic medium. In Section 4, we
start with classical elasticity solutions for a disclination
in a hollow isotropic elastic cylinder and later consider a
disclinated bulk cylinder that can be also radially
nonuniform. In Section 5, we give solutions of plane
elasticity problems for disclinations in the case of pla-
nar interfaces. Section 6 is devoted to spatial elasticity
problems solved for wedge disclinations. Finally, in Sec-
tion 7 we briefly discuss applications of the listed solu-
tions in various physical models that involved wedge
disclinations. We conclude with a brief Summary.

2. BACKGROUND

2.1. Foundations of linear isotropic
elasticity

We are interesting in the solutions of linear isotropic
elasticity problems for disclinations. In the linear elas-
ticity approach, displacements components iu  are re-
lated to the components of symmetric strain tensor 

km

by:

1
,

2
k m

km

m k

u u

x x

 
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 

 
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where Cartesian coordinates x
m
 are used and i,m,k=1,2,3.

Hooke’s law connects the components 
ij
 of the sym-

metric mechanical stress tensor with elastic strain com-
ponents 

km
:
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where the elastic constants for an isotropic elastic body:
shear modus G and Poisson’s ratio , are introduced, 

ij

is the Kronecker’s delta, = 
ij
 is the trace of strain ten-

sor,= 
kk

 is the trace of stress tensor. Note that in the
definition of tensor traces and in the following Einstein’s
summation rule is applied.

Stresses in the body interior in the absence of vol-
ume forces obeys the following equations of equilib-
rium:

0.
ij

i
x




  (3)

All together the system (1) to (3) has 15 equations
for 15 quantities. Its analysis is the subject of linear
theory of elasticity, when in standard cases compatible
strain fields in single-connected elastic bodies are in-
vestigated [11]. These cases deal, for examples, with
examining strain-stress of the bodies of various
geometries loaded by external forces or with given
displacements on a part of the body, i.e., surface, line, or
point.

Elasticity equations work also for the bodies with
internal mechanical stresses caused by eigenstrains
(self-strains) of various origin [12]. Typical example of
eigenstrain gives thermal expansion; the other impor-
tant example is related to the spontaneous deformation
that appears because of a phase transformation. For us,
the most interesting will be consideration of disclinations
as carriers of rotational plastic eigenstrain.

2.2. Boundary conditions for elasticity
problems

It is common in the theory of elasticity to subdivide
boundary-value problems into two main classes: when
on the surface that bound the considered elastic vol-
ume are prescribed as function of coordinates x

m
 either

(i) tractions (forces) T(x
m
) or (ii) displacements u(x

m
).

From a view of practical applications, the most im-
portant are the following boundary-value problems.
A) Elastic body loaded with external applied forces   .
For this case, the conditions

k l l kS
n T   (4)

hold with n
l
(x

i
) being the components of the surface S

normal unit vector n at each point x
i
 of the surface. Note

that the surface S can be either infinite or finite.
For source of internal stresses important are the

boundary-value problems with zero tractions:

0.
k k l l S

T n    (5)

This corresponds to the presence of unloaded surfaces
for an elastic domain containing for example a
disclination. Those can be free surfaces of a half-space,
a plate, or an infinite cylinder.
B) With the restrictions imposed on the surface
displacements. This can be the rigid condition, when
on the surface S

T
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0.
i S

u   (6)

In most general case the displacements on the surface
can be given in the form of some (not necessary con-
stant) functions:

( ).
i i kS

u x   (7)

When used for external surfaces of an elastic do-
main both conditions A or B together with the system of
Eqs. (1) to (3) of linear isotropic elasticity provide a sin-
gle-valued solution, which also is non-singular in the
domain interior. Expanding the conditions A to internal
surfaces gives the other class of solutions, e.g. for a
Mode I crack, whereas the application of the condition
of Eq. (7) to internal surfaces lead to the definition of
Somigliana dislocations [13]; we discuss the last case
in some details below in Section 2.3.
C) Phase boundaries or interfaces.  In this case we as-
sume the presence of the boundary between two do-
mains with different elastic moduli, for example G

1
, 

1

and G
2
, 

2
, with the continuity of displacements and

tractions across the interface S:

(1) ( 2) ;
i iS S

u u  (8a)

(1) ( 2) .
k l l k l lS S

n n   (8b)

The components of stresses that do not appear in Eq.
(8b) can be discontinuous at the interface S together
with discontinuity of some strain components. In the
limit cases, the solutions found with the conditions of
Eqs. (8) turn in the solutions for boundary-value prob-
lems for a free surface (with G

2
=0) or a rigid boundary

(with G
2
=).

D) Slipping interfaces. Such boundaries do not transmit
shear loads, normal stresses and displacements remain
continuous across the interface, but tangential
displacements can demonstrate discontinuities on sur-
face S:

(1) ( 2) ;
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(9c)

where s
k
 and t

k
 are components of two mutually

orthogonal unit vectors s and t laying in the plane tan-
gential to the surface S.

The surfaces with conditions of Eqs. (9) model the
grain boundaries in polycrystals under the realization

of grain boundary sliding and cracks of Mode II and
Mode III under external loading.

Real physical situations can lead to the combination
of boundary conditions on the external surfaces and/or
interfaces. The obvious examples are a crack at the phase
boundary or a disclination in a thin layer deposited on
the substrate with different elastic properties. It is use-
ful to note that, in general, boundary-value problems
can be classified as well-posed and ill-posed ones [14].
The well-posed problem can be solved (it least theoreti-
cally) and give a unique solution, whereas ill-posed prob-
lems usually do not have enough mathematical condi-
tions to find the solution. In this last case additional
physical arguments can be applied to turn the ill-posed
boundary value problem to practical results.

2.3. Geometry and elasticity of
line/surface defects in an infinite
continuum

Setting the conditions for displacements on internal
surface one can define a defect of general line/surface
type – Somigliana dislocation [13], as the generalization
of the Volterra process given in Fig. 1. For Somigliana
loop dislocation shown schematically in Fig. 2, we first
select the spatial configuration of the cut surface  rest-
ing on the defect line L. Then the surfaces of the cut
experience relative displacement u(r)|, which is the func-
tion on the position r on . As it was already noted for
Volterra process in Introduction, the material is inserted
in empty spaces (voids) or taken out from the regions of
material overlap; this is shown schematically in Fig. 2b.

Volterra distorsions, namely translation dislocations
with their main characteristic known as Burgers vector
b and disclinations characterized by Frank (rotation) vec-
tor  and the position in space r of the axis of this
rotation vector can be viewed as special case of
Somigliana dislocations with

( )


    u b ω r r  (10a)

or in component form

( ),
i i i j k j k k

u b x x


      (10b)

where 
ijk

 is the permutation symbol, x
k
are components

of the radius-vector r, and 
k

x are the components of the
vector that ends at a point of the line defining the axis of
rotation. It is important to note that the stress-strain
state for elastic solids with Volterra distorsions does
not depend on the position in space of the surface 
that is used in the defect definition [1,4] and therefore
dislocations and disclinations are considered as line
defects. For a general Somigliana dislocation the choice
of the surface  influences the distribution and conti-
nuity of some components of stresses and strains.
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Fig. 2. Line/surface defect with discontinuity of displacement u(r)|. (a) Surface G resting on a closed defect line L;
displacements of the cut surfaces for Somigliana (b) and Volterra (c) dislocations; in dashed region the material is
inserted.

Using different “language”, dislocations and
disclinations can be introduced in continuum with the
help of self-distortion *

ij
 [12]. For example, in the case

of the planar disclination loop laying in the plane x
p
 its

self-distortion can be written as [15]:

* ( ) ( ) ( ),
pi ijk j k k p

x x x H       (11)

where (z) is the Dirac delta-function and H() is the
Heaviside step-function defined for the part of the plane
bounded by the line of the loop.

In an elastic material, an isolated disclination can be
also defined as the line defect generating constant vec-
tor for the integral [16]

d ,
m n m n

l


    (12)

where 
mn

are the components of elastic bend-twist ten-
sor [17] and the integration is performed along an arbi-
trary contour  that captures the defect line.

It was shown by Mura [12,18,19] that in linear elastic
continuum the elastic fields of isolated disclinations and
dislocations can be found on the base of the total
displacements T

m
u given by the following formula:

* ( )
( ) ( ) d ,T km

m ij jikl

V l

G
u C V

x

 
  


r r

r r  (13)

where C
ijkl

 are the elastic constants; G
km

(r’-r) is Green
function of the elastic media [12].

Equation (13) can be transformed to the easy-to-use
expression [19]:

*
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ˆ exp( ) d d d .
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m
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r

r  (14)

Here *ˆ
ij
  and L

km
 are Fourier transforms of the tensors *

ij


and G
km

, correspondingly:
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i x y z
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


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For isotropic continuum

[2 / (1 2 ) ],
jikl ji kl ik jl il jk

C G          

3 2 4( 2 ) 2(1 ) / 2 (1 ) ,
mk mk m k
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

ij
 is the Kronecker’s symbol, G is a shear modulus,  is

the Poisson’s ratio, 
2 2 2 2

x y z
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Total displacements provide a possible way to find
total distortions T

mp
  and total strains T

mp
 , then elastic

strains 
mp

 and stresses via Hook law (for isotropic me-
dia defined via Eq. (2a)):

*ˆ exp( ) d d d ,

T

T m

mp

p

l p ij jikl km x y z

u

x

C L i





  



         r
 (15a)

 1
,

2

T T T

mp mp pm
     (15b)

* ,T

mp mp mp
     (15c)

where *

mp
 = ( *

mp
 + *

pm
 )/2.

It is known that for straight-linear defects [9,20] and
loops with rectangular geometry [9,21] elastic fields can
be expressed in a closed form including only elementary
functions, whereas for circular loop defects special func-
tions will be involved [9,15,22].

3. STRAIGHT WEDGE
DISCLINATIONS IN INFINITE
ELASTIC MEDIA

3.1. Stresses for a straight wedge
disclination in an infinite isotropic
continuum

Consider a straight disclination whose line goes along
the axis z of Cartesian coordinate system x,y,z (we also
use related cylindrical coordinates r,,z). For a wedge
disclination with r= 0 Frank vector coincides with the

Fig. 3. Geometry and coordinate systems used in calculation of elastic fields of wedge disclinations in isotropic
elastic media. (a) a straight wedge disclination with Frank vector = 

z
; (b) cylindrical r,,z and Cartesian x,y,z

coordinate systems associated with disclination line.

z- axis, too, as it is shown in Fig. 3. It is obvious that for
r , displacements given by Eq. (10) acquire infinite
values. In turn, this leads to infinite (unphysical) distor-
tions in an elastic continuum resulting from the realiza-
tion of Volterra process. Self-distortion of such wedge
disclination can be written in the following form:

* ( ) ( ).
yy

x y H x     (16)

Here we have chosen a half-plane (x > 0, y = 0) as the cut
surface ,  = e

z
with being the disclination strength.

Exploring Eqs. (15), (16), and (2a) one finds the
stresses for a wedge disclination in an elastic infinite
medium. In Cartesian coordinates the stresses for a
straight wedge disclination are [20]:

2
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2 2
,

2 (1 )
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G xy

x y


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   
 (17c)

where  is the disclination strength (or charge) – the
magnitude of Frank vector with the sign “+” or “-” de-
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pending on the manipulation with the material during
Volterra process with “-” corresponding to the inserted
wedge of material. Zero components of stresses are
omitted in Eqs. (17) (and throughout the whole text); the
form of the component 

zz
 is caused by the state of

plane strain for a straight wedge disclination.
Because of rotational nature of disclination defects

the stresses have the simplest representation (no de-
pendence on polar angle ) in cylindrical coordinates:

log ,
2 (1 ) 1 2

rr

G
r

 
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    
 
 
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 (18a)
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(18c)

where r2 = x2 + y2.
Found stresses satisfy equilibrium Eqs. (3) and dem-

onstrate typical features that are peculiar to disclinations
only. Elastic strains and displacements leading to the
relations for stresses defined by Eqs. (17) or (18) obey
conditions of Eqs. (10) and (12). Normal stresses of sin-
gle wedge disclination diverge as logr both for r 
and r  0. The logarithmic dependence of stresses on
coordinates is unphysical because log-function can
operate only dimensionless variables but not the coor-
dinates with the dimension of length. This means that
the coordinates in Eqs. (17) and (18) should be normal-
ized to some length. Such a normalization for straight
disclinations is possible in the case of multipole
disclination systems or for disclinations in the bodies
of finite size. The analysis of the second possibility is
the main subject of this review. In general, the relations
for elastic fields of disclinations in infinite continuum
can be only used as building blocks in construction of
the relations for multipole configurations and as start-
ing point for finding the solutions of elasticity bound-
ary-value problems.

It is well known that in the case of plane strain, i.e.,


zz 
= 0, three independent components of stresses can

be found with the help of Airy stress function , which
satisfies the biharmonic differential equation [11]:

0;   (19)

2 2 2

2 2
, , ,

( ).

xx yy xy

zz xx yy

y x x y

     
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   

     
(20a-d)

The case of wedge disclinations fits the condition of
plane strain, thus Airy stress function can be advanced
to reproduce the stresses from Eqs. (17) by exploring
the relationships (20). Such stress function was pro-
posed in Ref. [23]:

   

2

2 2 2 2
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8 (1 )

G
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G
х y х y


  

  


 
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 (21)

It easy to check that the stresses found with the help 
coincide with those given by Eqs. (17) with accuracy to
constant term. In many cases the solution of elasticity
problems for wedge disclinations can be searched hav-
ing stress function  as starting point. It worth to note
that stress function of an edge dislocation can be de-
rived from Eq. (17) by differentiation with respect the
coordinate (x or y). The property of representation of an
edge dislocation in the form of wedge disclination di-
pole is useful for the solution of elasticity problems both
for dislocations and for disclinations; this feature was
explored for the first time in Ref. [23].

3.2. Quadrupoles of wedge disclinations

The energy stored in any elastic field can be calculated
by integrating elastic energy density over the whole
volume of the system:

1
( ) ( ) d

2
ij ij

V

E V   r r (22a)

or in the case of the defect by the equivalent approach
developed by Mura [12] basing on the consideration of
plastic distortion *

ij
  (or eigenstrain *

ij
 ) of the defect:

* *1 1
( ) ( ) d ( ) ( ) d .

2 2
ij ij ij ij

V V

E V V        r r r r (22b)

In the case of a single wedge disclination or even in the
case of a wedge disclination dipole, which is formed of
two opposite sign disclinations, the calculations with
Eqs. (22) give infinite value for the elastic energy. How-
ever, wedge disclinations quadrupoles provide the ex-
ample of disclination systems in infinite media with fi-
nite stored elastic energy. Such systems, also known as
self-screened disclination configurations, are useful for
practical applications; they were studied in necessary
details in Refs. [4,10,24].

The self-energies for quadrupoles, shown in Fig. 4,
have the following algebraic representations:
(a) for the parallelogram (Fig. 4a)
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(b) for the rectangle (Fig. 4b)
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(c) for the rhombus (Fig. 4c)
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(d) for the square (Fig. 4d)
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(e) for the line quadrupole (Fig. 4e)
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Fig. 4. Self-screened disclination quadrupoles, adapted from [24]. Parallelogram (a), special cases of parallelogram: a
rectangle (b), a rhombus (c), a quadrate (d), and line quadrupoles (e) and (f) as degenerate parallelograms.



63Elasticity boundary-value problems for straight wedge disclinations. A review on methods and results

(f) for the line quadrupole (Fig. 4f)
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In Eqs. (23), the energies are given per unit length of
disclination lines, which spread normally to the plane of
schematics in Fig. 4. For the used quadrupole param-
eters, i.e. r

1
, r

2
, a, a

1
, a

2
, and 

1
 we have adopted their

meanings in accordance with those shown Fig. 4. Note
that in the original work, see Ref. [24], the formulas were
given for the case of plane stress, but not plane strain.
They are related by a simple renormalization procedure;
one just needs to substitute the multiplier G/(1-) with
G(1+) in Eqs. (23).

4. WEDGE DISCLINATIONS IN AN
ELASTIC CYLINDER

4.1. Wedge disclination in a hollow
cylinder

Historically first solved boundary-value problem for
disclinations was the problem for a wedge disclination
in a hollow elastically isotropic cylinder [8]. It is sup-
posed that a positive wedge disclination is formed when
a wedge-like sector of material is taken out from the
hollow cylinder with internal and external radii r

0
 and R

respectively, as it is schematically shown in Fig. 5. We
assume that the edge of the wedge-like sector of angle
 coincides with cylinder axis. For comparison, for a
negative wedge disclination shown in Fig. 1 the wedge-
like sector is inserted in the cut cylinder.

Presence of internal and external free lateral cylinder
surfaces means that for both of them the boundary con-
ditions for stresses of the type of Eq. (5) hold:

0
0, , , .

k r r r
r R

k r z


     (24)

The described elasticity boundary-value problem is clas-
sical in the theory of elasticity; its solution can be found
in numerous elasticity monographs and handbooks. For
example, following Ref. [11] we get for stresses:
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Remarkable feature of the disclination solution given
by Eqs. (25) is not only complete fulfillment of the bound-
ary conditions

0
0,

r r r r
r R



   (26)

but also, the absence of the net force in the z-direction:

0

( ) d 2 ( ) d 0.
R

z zz zz

S r

F r S r r r        (27)

This means that the found stresses can be used for the
analysis of wedge disclination behavior in finite height
cylinders with high height/diameter aspect ratios with-
out introduction of additional terms accounting for axial

Fig. 5. Introduction of a positive wedge disclination of strength w in a hollow cylinder. Schematics for cylinder cross-
section in the process (a) and after (b) wedge-like material sector extraction.

(a) (b)
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loading. Of course, near cylinder ends the solution
should be modified to include three-dimentional char-
acter stress-strain state that will lead to the appearance
of the non-uniform (in dependence on coordinate r)
displacements of cylinder ends. Such an effect is clearly
seen in the photographs of wedge disclinations models
made from gelatin in seminal Volterra’s work, see Ref.
[8].

Calculations with the help of Eqs. (22a) or (22b) re-
sult in the energy of wedge disclination in the hollow
cylinder [25]:

22 2 22 2

0 0 0

2 2 2

0

4
log .

16 (1 )

c R r r rG R
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R R r R
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 (28)

Here and below for plane strain problems we write the
energies per unit length of a disclination line.

It is obvious that the disclination energy does not
depend on its sign. This is a direct consequence of the
linearity of elasticity Eqs. (1) to (3) we use. In the con-
sidered geometry the disclination energy is controlled
by two screening parameters r

0
 and R. One limiting case

concerns the formation of a disclination in a thin cylin-
drical shell of constant thickness  with the radius of
the shell R ; under such conditions Eq. (28) ac-
quires the form:

2 3

.
8 (1 )

c G
E

R

 

  

 (29)

The other limiting case that deals with so-called singu-
lar disclinations is considered in detail in the next Sec-
tion.

4.2. Singular wedge disclinations in a
cylinder

Relation for stresses of a singular wedge disclination,
which line coincides with the axis of the bulk cylinder
with external radius R, can be determined from Eqs. (25)
allowing r

0 
 0 and transforming to Cartesian coordi-

nates:
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where r2=x2+y2, as before.
There is an obvious similarity with the stresses of

singular disclinations in infinite isotropic continuum,
see Eqs. (17) and (18): the same logarithmic dependence
on r is present with singularity for r  0. However, the
log-functions in Eqs. (30) are physically correct because
radial coordinate is normalized by screening length R.
Note that stresses for a singular wedge disclination in a
cylinder can be obtained with help of the following Airy
stress function:
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 (31)

The energy of a singular wedge disclination in a
cylinder is derived from Eq. (28) in the limit r  0:

2 2

0
.

16 (1 )

c G R
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
  

 (32)

It follows that the elastic energy of a singular wedge
disclination has no dependence on the core radius
(which is equivalent to r

0
), to the contrary to well-known

result for dislocations [1]. This is related to the linear
dependence of displacements of the cut surface in the
Volterra process of disclination formation on distance r.

For complete analysis of wedge disclination behavior
in a cylinder one needs to know the properties of a wedge
disclination shifted with respect the axis of a cylinder,
see Fig. 6. The solution for stresses of such a disclination,
e.g., disclination 

1
displaced from coordinate origin by

r
1
 along x-axis, is set by the following Airy stress func-

tion [26]:

Fig. 6. Schematics for the interaction of wedge
disclinations in a cylinder. Two wedge disclinations with
strengths 

1
and 

2
 are shifted with respect cylinder

axis by r
1
 and r

2
, correspondingly; angle 

12
gives rela-

tive angular position between disclinations.
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We do not provide here cumbersome formulas for stress tensor components that are derived by exploring Eqs.
(33) and (20) but rather discuss the pair interaction energy 

12

cE  between two arbitrary placed disclinations in a
cylinder, as shown in Fig. 6. This energy can be found as work done during the formation of disclination 

2
 in the

stress field 1

ij
 of the disclination 

1
:
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that gives [26]
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From Eq. (35) one can get:
(i) with r

2 
= r

1
, 

2 
= 

1
, and 

12 
= 0 the self-energy 

1

cE


of wedge disclination shifted with respect the cylinder axis:
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which reproduces for r
1
=0 the energy of unshifted disclination of Eq. (32);

(ii) with r
1
=0 or r

2
=0 the energy of pair interaction of two disclinations when one of them is in the central position in

the cylinder; this particular result was found in Ref. [27].
Total energy 

12

cW  of the disclination system, shown in Fig. 6 can now easily found as

12 1 2 12
.c c c c

r r
W E E E    (37)

Note that configurational forces acting on disclinations in the considered system are defined by the dependence of
the total energy on the system parameters, but not of separate energy contributions.

4.3. Wedge disclination in a two-phase cylinder

For singular wedge disclination in a two-phase cylinder (this case is shown schematically in Fig. 7) boundary
conditions of type A, see Section 2.2, must be fulfilled at the external cylinder surface, i.e. for r=R

2
, and boundary

conditions of type C at the interface inside a cylinder, i.e. for r=R
1
.

Fig. 7. Wedge disclination in a two-phase cylinder. In the domain r  R
1
 elastically isotropic material is characterized

by shear modulus G
1
 and Poisson’s ratio 

1
 whereas for domain  R

1 
 r  R

2
 by shear modulus G

2
 and Poisson’s ratio


2
. The disclination line and Frank vector coincide with the cylinder axis.
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Solution for this problem was given in Ref. [28]. The stresses should be written separately for two domains:
(i) for r  R

1
:
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(ii) for R
1 
 r  R

2
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where G
1
, 

1
 and G

2
, 

2
 are shear moduli and Poisson’s ratios for domains 1 and 2, correspondingly.

It is easy to check that the stresses defined by Eqs. (38) and (39) satisfy the boundary conditions mentioned
above. In limit cases G

2 
= 0 or G

2 
= G

1 
= G, 

2 
= 

1 
= , these formulas reproduce the stresses for a wedge disclination

in a uniform cylinder of radius R
1
 or R

2
, respectively, whereas with G

1 
= 0 one gets the solution for hollow cylinder, see

Eqs. (22). The other limit case for a disclination with rigid core can be obtained when assuming G
1
>>G

2
. This later

case has been considered in detail and in other formulation in recent work [29].
The energy of a wedge disclination in two-phase cylinder is [28]:
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 (40)

This formula transforms to Eq. (31) and Eq. (26) with R
1
=0 and G

1
=0, respectively.

The elastic behavior of wedge disclinations in various inhomogeneous structures of cylindrical symmetry was
also considered. Authors of Refs. [30] and [31] studied the elastic interaction of wedge disclination dipoles with
circular and annular inhomogeneities embedded in infinite matrix, respectively. The elasticity solution for a wedge
disclination dipole interacting with a coated circular inhomogeneity in an infinite medium was found in Ref. [32].

Concluding this section, it makes sense to mention the analysis of the elastic behavior of wedge disclinations in
a functionally graded cylinder recently performed in Ref. [33].

5. PLANE ELASTICITY FOR DISCLINATIONS NEAR PLANAR INTERFACES

5.1. Wedge disclination at a free surface

When a disclination approaches to the surface of a cylinder, e.g. disclination 
1
 in Fig. 6, the character of screening

in the system changes: the distance to the nearest cylinder surface d = R - r
1
 becomes the dominant screening

parameter. In the limit r
1
, R  and d = const we have a wedge disclination in a half-space. Airy stress function

(defined in the coordinate system shown in Fig. 8) for such a disclination can be easily derived from Eq. (32):
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where, as before,  designates the disclination strength.
Exploring Eq. (41) together with Eqs. (17) leads to the stresses of the wedge disclination in a half-space:
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In Refs. [34,35] the elastic fields of wedge disclination parallel to the surface of a half-space were found with
different methods: using complex potentials [34] or with the virtual defect technique [35]. In the second method, to
fulfill the boundary conditions for stresses on the free surface the following virtual defects were introduced: image
wedge disclination of opposite sign placed at the point with coordinates (d,0) and the distribution of surface edge
dislocations with their Burgers vector being parallel to the free surface [35]. It is assumed that the elastic fields of
virtual defects have the physical meaning only for a domain where real wedge disclination is placed, i.e. for the half-
space x  0. In the following it will be demonstrated that the virtual defect technique is effective in the solution of
various boundary-value problems for disclinations. Here we only mention that the same approach was used to find
elastic fields in an isotropic half-space not only for wedge disclinations, but also for straight-linear twist disclinations
[36].

When analyzing the asymptotes of wedge disclination stresses at large distances from the free surface, i.e.
r = (x2 + y2)>>d, the following scaling behavior was discovered [4,36]:

2

2
~ ,

1
ij

G d

r




 
 (43)

which is alike to the scaling law for the stresses of edge dislocations placed in the vicinity of a free surface.

Fig. 8. Wedge disclination parallel to free the surface of a half-space. Disclination is at the distance d from the free
surface. The origin of Cartesian coordinate system x,y,z is chosen to be at the surface.
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Energies of isolated wedge disclination and their ensembles can be determined from Eqs. (35)-(37) by passing to
the limit from disclinations in a cylinder to disclinations in a half-space as it is described in the beginning of this
Section. This agrees with the results found in Refs. [35,37] by direct calculations based on Eqs. (22). In particular, for
the energy Ed per unit length of singular wedge disclination parallel to a free surface of elastically isotropic half-
space one finds:

2 2

.
4 (1 )

d G d
E



  

 (44)

Comparing the energies given by Eqs. (32) and (44) we note the same typical quadratic dependence on the parameter
of screening (R or d) and the different, as it should be expected, screening ability of free surfaces in cylinder in
comparison to half-space: the wedge disclination energy surrounded by the surface, i.e. in a cylinder, is four times
less for R=d. It is also natural that pair interaction of disclinations in a half-space demonstrates non-central character
and depends on the distance for each of them to the surface [37]; the analysis of such interaction for the dipole
configuration is briefly discussed in the next Section.

5.2. Disclinations near interfaces

In accordance with variants of boundary conditions mentioned in Section 2.2 we consider two cases: wedge
disclinations in the vicinity of (i) phase boundary or (ii) sliding interface.

For the first case, we follow the results of Ref. [38] where the elastic properties of wedge disclination dipole in the
geometry shown in Fig. 9 were investigated. It was found that for the case = 0 (dipole arm being parallel to the
phase boundary with d being the dipole distance to the interface) Airy stress function that provides the fulfillment
of the boundary conditions of type C (see Eqs. (8)) at the interface is written as
(i) for x  0:
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(ii) for x0
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Fig. 9. Dipole of wedge disclinations near the internal boundary separating phases with different elastic properties.
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where A and B are Dundurs’s coefficients [39]:
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with G
1
, 

1
 and G

2
, 

2
 being elastic moduli for materials 1 and 2, correspondingly, as shown in Fig. 9.

In the case of a free surface (A=B=1), (2) vanishes and Eq. (45a) gives Airy stress function (1) for wedge
disclination dipole in elastically isotropic half-space. From Eqs. (45) one finds the stresses and other elastic fields
that completely obey the boundary conditions of Eqs. (8).

For arbitrary combination of elastic constants, the elastic energy either for isolated wedge disclination or a
disclination dipole in two joined half-spaces is infinite because the screening of the phase boundary is not effective
enough and the elastic fields of such objects are not localized. Still, with the help of the results for stresses of wedge
disclination dipole at a phase boundary or at a free surface configurational forces acting in such system can be
determined. For example, the component of the force in the x-direction acting on the dipole shown in Fig. 9 is [38]:
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where a is half of the dipole arm and the relation l
2 
- l

1 
= 2acos is used. As it was explored for stresses, with A=B=1

we find the force attracting a wedge disclination dipole to the free surface:
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 (47)

Interesting property of the force d

x
F  is the existence of the maximum in the dependence on d

x
F distance at d = a|cos|.

The expression for the attractive force was first derived in Ref. [37], where the energy of wedge disclination dipole in
a half-space was found:
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This expression permits also to determine the configurational momentum Md:
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which tends to bring the dipole in the orientation with minimum of energy with  = 0. For this orientation one can
analyze the interaction between disclinations when they are in the dipole configuration. The force for this interaction
is [37]:
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It is easy to check that force d

x
F  is always attractive and reaches the maximum value for  0.3d.

The second example deals with the interaction of disclinations with so-called sliding boundaries. It is assumed
that there exists an internal surface that does not support shear forces. This also means that shear stresses vanish
on such an interface. The analysis of the behavior of wedge disclinations placed in the vicinity of planar sliding
boundary of infinite or finite (as given in Fig. 10) extent was performed in Ref. [40]. It is worth to note that here the
well-posed elasticity problem was not formulated, instead the problem of the equilibrium of distributed edge disloca-
tions in the field of the wedge disclination was investigated assuming such dislocations as carriers of sliding.
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Negative wedge disclination in the geometry shown
in Fig. 10 generates the following shear stresses in the
plane of the boundary:
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 (51)

The pileup of edge dislocations with their Burgers vec-
tor being parallel to y-axis will completely compensate
these stresses in the region of the interface -l<y<+l if
their distribution function f l(y) (the dislocation density
per the length of the interface in y-direction) is:
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where b is the infinitesimally small magnitude of virtual
dislocation Burgers vector. For the sliding boundary of
infinite extent when l  the distribution function ac-
quires the simpler form:

2

2 2
( ) .

d
f y

b y d

 

 

 (53)

With the help of the found distribution functions given
by Eqs. (52) or (53) one can find the stresses of the
wedge disclination (or disclination configurations)
placed in the material with sliding boundary, which will
be just superposition of the stress filed of the
disclinations in infinite media and stress field induced
by virtual edge dislocation pileup [40]. For example, for
the shear stress component that is of the most interest
in the case of infinite sliding boundary we have:

Fig. 10. Negative wedge disclination near the sliding
boundary. Virtual edge dislocations responsible for slid-
ing and vanishing shear stresses in the selected part of
the interface.
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which obviously demonstrates the fulfillment of the
condition 

xy
(x = 0,y)  0.

The interaction of wedge disclination dipoles with
sliding boundary demonstrates an unexpected feature
related to the dipole arm orientation with respect to the
boundary, see Refs. [40] and [4]. For two important di-
pole orientations (parallel and normal to the boundary)
for the forces we have:
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The analysis of Eqs. (54) shows that the dipoles having
an arm parallel to the infinite sliding boundary will repel
from it (

x
F  < 0) whereas the dipoles having a perpen-

dicular arm will be attracted (
x

F  > 0) to such an inter-
face.

5.3. Disclinations in the plate of a finite
thickness

For the sources of internal stresses, e.g. dipole of wedge
disclinations placed with arm 2a in a plate of finite thick-
ness 2t (see Fig. 11), boundary conditions of the type
defined by Eq. (5) must be met for the both surfaces, i.e.
for x=±t. The other parameters include positions (x

1
,y

1
)

and (x
2
,y

2
) of positive + and negative - disclinations,

respectively. This boundary-value problem can be
solved as it was proposed in Ref. [41] by finding distri-
bution functions f k(y), k=1+, 2+,1-,2- of virtual surface
edge dislocations, which are placed at the correspond-
ing surface of the plate and possess Burgers vector in
the directions being either parallel or perpendicular to
the surfaces of the plate. It appears that in this case, one
cannot determine the distribution functions in the ana-
lytical form (to the contrary to the case considered in
the Section 4.2), but only their Fourier transforms ˆ ( )kf s 1.
Then, the stresses of a disclination dipole in a plate can
be found in the form of single integrals of ˆ ( )kf s :

1 We define the pair of Fourier transforms as:
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where 
ij

 (x,y) is the field of a disclination in infinite medium (see Eqs. (17)), ˆ k

ij
 (x,s) is the Fourier transform of the

stresses of a probe dislocation in the k-th array.
Analytic expressions for the Fourier transforms included in relation (55) were obtained in Refs. [38,39], they look

like:
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Fig. 11. Wedge disclination dipole in a plate of finite thickness. The line of disclinations are parallel to the plate
surfaces; f1,2±are distribution functions of virtual edge dislocations, which are introduced to fulfil boundary condi-
tions.
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where  is disclination strength, b is the magnitude of dislocation Burgers vector, G is the shear modulus,  is the
Poisson’s ratio;
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The energy dd

t
E  of the disclination dipole in the plate of finite thickness can be found by calculating the mechani-

cal work done in the process of the dipole formation or by applying general formulas of Eqs. (22a and 22b). The first
from the mentioned techniques leads to the following expression [41]:
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where m  is the number for the disclinations in the dipole: m=1 for positive wedge disclination and m=2 for negative
one, correspondingly.

Analysis, see Refs. [4,41] shows that the integrations in Eqs. (55) and (58) in the general case of the plate of finite
thickness cannot be performed analytically. However, it has been demonstrated in Ref. [42] that with the help of the
obtained formulas and using passages to the limits, e.g., when plate thickness tends to the infinity with disclination
dipole being kept near one of the plate surfaces, the analytical relations (given is Section 4.1) for wedge disclinations
parallel to a free surface of elastic half-space are reproduced exactly.

Other limiting cases allow to investigate elastic properties of a single wedge disclination in the plate of finite
thickness. For this one has to assume that either one of the disclinations of the dipole comes to the surface of a plate,
i.e., x

2
=±t, or its ordinate tends to infinity, i.e. y

2
±. Then, the relations found for the stresses of a dipole, Eq. (55)

give the stress field of an isolated wedge disclination in a plate. Comparison of stress distributions for wedge
disclinations with various character of screening: in a cylinder, at a free surface, or in a plate shows that in a vicinity
of disclination line the stresses are only slightly affected by boundary conditions; for example, in the core of a
positive disclination there is always compression. However, the position of neutrals (the contours at which the
stresses change the sign) and their configurations are uniquely determined by the body shape and the location of
the disclination in the body as it can be seen from the stress maps collected in Ref. [4].

The self-energy of a disclination in a plate d

t
E  can be calculated with the help of formula like Eq. (58). The energy

is maximal when disclination is placed in the center of a plate [41]:

2 2

0.182 .
2 (1 )

d

t

G t
E




  
 (59)
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Comparing Eqs. (59), (44), and (32) one concludes that the energy for a disclination sitting in the plate is between the
energies of a wedge disclination in a cylinder and one in a half-space when R=t=d. This obviously means that among
plane elasticity problem cylinder possesses the highest screening ability for wedge disclinations.

Presence of wedge disclinations in a plate induces another phenomenon, namely plate bending [4,41]. The
straightforward method to find the bending angle  of the plate that contains a wedge disclination dipole, is to
explore the work reciprocity principle (WRP), for details on WRP see Ref. [11]. According to WRP, the work of the
momentum with component M

z
 (in the geometry of Fig. 11) required to bend the plate by the angle  is equal to that

of normal bending stresses M

yy
z  when forming disclination dipole in the plate:

1 2

1 2
d ( )( ) d ( )( ) d ,z z

t t

M M

z уу уу

x x

M z x x x x x x x x




      
 
 
 

    (60)

where M

yy
z = M

z
x/I

z
 with I

z
 being a component of the momentum of inertia of the plate cross-section. Then, from Eq.

(60) for angle  we find:

2 2

2 1 1 1 2 2

2

3
1 .

2 3

x x x x x x

t t

  
   

 
 
 

 (61)

Interesting and important observation follows form Eq. (61) regarding the bending of the plate with a single
disclination; the bending angle can be determined when one of disclinations of the dipole being placed on one of the
plate surfaces. Unlike the elastic fields that angle  will depend on the procedure of the disclination formation in the
plate and therefore cannot be found explicitly basing only on the position of a single disclination in the plate.

6. 3D ELASTICITY BOUNDARY-VALUE PROBLEMS FOR WEDGE
DISCLINATIONS

In this section, we present results for the solution of spatial elasticity boundary-value problems for wedge
disclinations. The necessity of solving of such class of problems is dictated by a possible variation of the materials
properties along the disclination lines.

6.1. Disclinations normal to the surface of a half-space

To find elastic fields of wedge disclinations normal to the free surface of a half-space it is convenient to consider
again a dipole configuration (Fig. 12), in which the positions of disclinations in chosen co-ordinate system are given
by parameters y

1
 and y

2
. As in the previous cases to satisfy the boundary conditions at the free surface set by Eq. (5),

the stresses n

ij
  of the dipole of wedge disclinations normally emerging the surface can be written as the sum of

stresses of the dipole in infinite medium 
ij

 and additional field i

ij
  that needs to be determined:

( , , ) ( , ) ( , , ).n i

ij ij ij
x y z x y x y z      (62)

In Ref. [43] the solution to the considered problem was found with the help of harmonic three dimensional
stress-functions [11]. In particular, additional stresses for disclination dipole were obtained:

Fig. 12. Dipole of wedge disclinations with the lines of defects being normal to the surface of a half-space.
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where 2

z
r =x2+(-y)2+z2. Simple analysis shows that boundary conditions for stress components defined by Eq. (62)

are satisfied identically, i.e. n

zz
 (x,y,z)|

z = 0
 0, n

yz
 (x,y,z)|

z = 0
 0, n

zx
 (x,y,z)|

z = 0
 0.

In general, the fields for a single wedge disclination that is normal to a free surface differ significantly from those
of a defect in an infinite medium. For example, from Eqs. (18), (62), and (63) for the stress component 1n

zz
  of an isolated

wedge disclination one can get:

3

1

3

2
( , , ) , for ,

3 (1 )

n

zz

G z
x y z r z

r


  

  
  (64)

where as before r2=x2+y2. Unlike to the dependence given by Eq. (18c) this component does not diverge as function
of r; by contrast, it demonstrates fast decay. However, the components 1n

xx
  and 1n

yy
   maintain their logarithmic

dependence on r. This fact and the dependence of elastic fields on co-ordinate z do not allow to define an energy of
wedge disclination per unit length.

6.2. Wedge disclinations in the plate of a finite thickness

To find the stresses of wedge disclinations being perpendicular to the surfaces of a plate (see Fig. 13, where dipole
configuration is shown) the technique of virtual dislocation loops can be explored [15,44,45]. Utilizing this tech-
nique, the families of prismatic dislocation loops and loops of radial Somigliana dislocations with distribution
functions 

1,2
( )pf c  and 

1,2
( )sf c , respectively, are introduced for two surfaces of a plate. In the adopted in Fig. 13

notations the upper left index (+ or -) designates the side of a plate, the upper right one (p or s) is responsible for the
type of virtual loops and the subscript (1 or 2) is anchored to the disclination in a dipole, whereas c is a variable radius
of the loops, and 2t is the thickness of a plate.

Then, the stress field of wedge disclination dipole in the plate t

ij
 (r,,z) is represented as a sum of the dipole filed

in an infinite elastic medium 
ij

 (r) and the field a

ij
 (r,,z) generated by the distributions of virtual circular dislocation

loops:

( , , ) ( ) ( , , ),t a

ij ij ij
r z r r z        (65)

where cylindrical coordinates are utilized. Note that similar representations were used in Eqs. (55) and (62).
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Fig. 13. Dipole of wedge disclinations whose line are normal to the surface of the plate of finite thickness. To meet
boundary conditions distributions of prismatic dislocation loops 

1,2

pf  and radial Somigliana dislocation loops 
1,2

sf

are introduced.

Boundary conditions of Eq. (5) written with the help of Eq. (65) in terms of the above introduced distribution
functions of loop defects constitute the system of integral equations that can be solved by exploring the technique
of integral transformation. In contrast to the case considered in Section 4.3 where for disclination lines parallel to
plate surfaces the Fourier transform is used, here for the solution the application of Hankel-Bessel integral transfor-
mation2 becomes effective. It was found in Ref. [15] that Hankel transform ±H

1,2
 of the dislocation loop distribution

functions ±f p,s(c) (here we omit subscripts because of the symmetry of the problem)

1 1
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( ) ( ) ( ) d ,pH J c f c c c


     (66a)

 2 2
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( ) ( ) ( ) dsH J c f c c c c
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    (66b)

can be found explicitly in analytical form:
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In Eqs. (66)  and below in the text J
n
() are Bessel functions of argument  and n=0,1,2...

As for the case of disclinations with parallel orientation of their lines with respect to plate surface (see Eq. (55)),
to find the stresses of virtual dislocation loops there is no need to have distribution functions themselves, but it is
enough to work with their Hankel transforms given by Eqs. (67). Such an approach leads to the following formulas
for stresses a

ij
 (r,j,z) [4,15]:
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2A pair of Hankel-Bessel integral transforms are defined as: 
0

( ) ( ) ( ) dH f r J r r r


 
    and

0
( ) ( ) ( ) df r H J r
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       [46].
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where the meaning of r
k
 and 

k
 (with k=1.2) becomes clear from the schematics in Fig. 13 (note that these parameters

can be expressed via polar coordinates (r,) and half of the dipole arm a’) and the following designations are
introduced:
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The found stresses of wedge disclination dipole in a plate can be tested for fulfillment of boundary and equilib-
rium conditions defined by Eqs. (5) and (3), correspondingly. When disclination dipole arm tends to zero, the
relations of Eqs. (68) make it possible to determine the stresses of an edge dislocation perpendicular to the surfaces
of a plate; this unique result was first reported in Ref. [44].

6.3. Wedge disclinations in bodies with spherical geometry

To solve elasticity boundary-value problems for wedge disclinations described above, we use again the representa-
tion of the final elastic field under question as the sum of the singular disclination elastic field (e.g. displacements 

k
u

and stresses 
ij

 ) in infinite medium and an additional field (
k

u, 
ij

 ) that is responsible for the fulfillment of the
boundary conditions at the interfaces and/or external surfaces of the body. In cases of wedge disclinations placed
in the bodies with spherical free surfaces we follow the same methodology and find the solution in the form:

( , , ) ( , , ) ( , , ),S a

ij ij ij
R R R            (69)

where we assume symmetrical positioning of wedge disclinations with respect spherical surfaces as it is shown in
Figs. 14-16 and use spherical coordinate system (R,,) with the origin in the point on a wedge disclination line.

In spherical coordinates the stresses 
ij

 given by Eqs. (17) or (18) acquire the other form:

1
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Fig. 14. Wedge disclination (WD) in an elastic spherical layer (SL). (a) Introduction of a positive WD into the SL; (b)
the WD with Frank vector e

z
 in the SL. The Cartesian (x,y,z) and spherical (R,,) coordinates are shown. G is

the shear modulus and  is the Poisson’s ratio of the material of the SL.

Fig. 15. Wedge disclination (WD) in a bulk elastic sphere. (a) Introduction of a positive WD into a bulk elastic
sphere, (b) a WD with the Frank vector e

z
 in the bulk sphere of radius a.

Fig. 16. Wedge disclination (WD) with the Frank vector e
z
axially pierces a spherical pore of radius a

p
 in an

elastic medium.
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where 0  R < , 0    , 0   2. Cartesian and spherical coordinates are related by: x = Rsincos, y = Rsincos,
z = cos, R2 = x2 + y2 + z2, = cos-1(z/R).

For the first time the solution for elastic fields and energy of a wedge disclination in a bulk isotropic sphere was
given in Ref. [47]. We however follow the results of Ref. [48] where the solution for a disclination piercing a hollow
sphere is first derived and then special cases of a bulk sphere and a spherical pore are considered.

6.3.1. Disclination piercing a spherical layer

The procedure of the introduction of a wedge disclination, which goes through sphere diameter, in a spherical layer
(SL) with internal and external radii a

i
 and a

e
, respectively, is shown in Fig. 14a. The procedure is very similar to the

Volterra process for a wedge disclination in a cylinder that was described in detail in Section 1.
Due to the chosen axial symmetry of the problem, there will be no dependence of disclination elastic fields on the

angle  and the stress component SL

R
 . The elastic field, generated by the wedge disclination in the SL, must satisfy

the following four boundary conditions on the SL free surfaces:

| 0, | 0, | 0, | 0.SL SL SL SL

RR R RR R R R R Ri e i ea a a a     
         (71a-d)

The solutions of the elastic problems of this type can be found through the universal equations describing the
stress-strain state for a hollow sphere subjected axial symmetric internal and external loading [49]. As it was found in
Ref. [48], the stresses of the wedge disclination are written as:
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where P
n
(t) are the Legendre polynomials and 1 ( )

n
P t  are the associated Legendre polynomials; t = cos,
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1

2
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( ) ( 1)(1 ) ,n n

n

dP t dP
P t t

dt d
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n
P (cos) = 0 and the normalized dimensionless terms 2 2 2 ( 2 1) ( 2 3), ; ; ;m m m m
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0 0 0 0
;

i
A A D D a     are used.

In its turn, the coefficients A
m
, B

m
, C

m
, and D

m
 for m  1 are determined from the following algebraic system of

equations, which holds for any boundary-value problem for spherical layer with boundary conditions of Eqs. (71):
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The degenerate case of m=0 specifies two remaining and contributing to Eqs. (72) coefficients:
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According to the results presented in Ref. [48], the only quantities that account for the presence of wedge
disclination in the layer with the magnitudes of internal a

i
and external a

e
radii of the spherical layer are 

0

i , 
0

e , 
1

i , 
1
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1

i , and 
0
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i ei e
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(74c)

The other coefficients with m>1 entering in the system of Eqs. (73), i.e. i

m
 , e

m
 , i

m
 , and e

m
  include as the parameter

only wedge disclination strength :

, (1 2 )(2 1)( 1)(4 1) (4 1)
, 2, 3, 4...
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The set of the listed Eqs. (72) to (75) allows to investigate the distribution of mechanical stresses in a spherical layer
with a wedge disclination that was demonstrated on the example of stress maps in Ref. [48].
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6.3.2. Disclination in a bulk sphere

In the case of a wedge disclination in a bulk sphere (see Fig. 15) the solution of elasticity boundary-value problem
can be found utilizing formulas from previous Section and assuming a

i
=0 and a

e
=a with a being sphere radius. For

a sake of completeness, we write here the stresses BS

ij
  according to the formulas given in Ref. [48]:
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where
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(m  1) with 
m
 and 

m
 defined by Eqs. (74) and (75) by substituting a

e
with a.

We note that elasticity solution for a wedge in an isotropic bulk sphere were given in the other form in Ref. [47] where,
in addition, the expression for elastic energy of disclinated sphere was provided:
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6.3.3. Disclination running through spherical cavity

The solution for stresses p

ij
   of a wedge disclination intersecting a spherical cavity (pore) of radius a

p
 (see Fig. 16)

can be extracted from general formulas of Eqs. (72) for stresses of a disclination in a spherical layer by setting a
i 
= a

p

and a
e 
= .

The other straight-forward way to get stresses p

ij
  that satisfy the boundary conditions on the pore free surface

was given in Ref. [45] where the result was written as:
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for (m  1) with ( )p

m
  and ( )p

m
 defined by Eqs. (74) and (75) by substituting a

i
 with a

p
.

One may note that the formulas written above have a restricted physical meaning because there is no screening
for disclination elastic filed at large distances from the pore and logarithmic divergence of disclination stresses
remains.

6.4. Conic disclinations in an elastic sphere

Considering a bulk sphere, we can imagine another defect – a conical disclination, which formation is described by
a procedure being very similar to the Volterra process for a wedge disclination in a cylinder. Localized conical
disclination is introduced in a sphere by cutting and removing a cone of solid angle  with the subsequent contrac-
tion and gluing of the surface of the conical dimple along the radius of the sphere as shown in Fig. 17a. Alternatively,
an additional solid conus can be inserted in a solid sphere. In the first case we have a positive localized conical
disclination, and in the second – a negative one. Plastic strain (eigenstrain) for a positive conical disclination has the
following form:

* *

0 0
(cos cos ) ( ) ( ),H a R

 
              (80)

where () is the Dirac delta-function, H(z) is the Heaviside step function, (R,,) is the spherical coordinate system,


0
 and 

0
 are the angle coordinates of the gluing radius, a is the radius of the sphere.

Elastic fields for such conical disclination can be, in principle, found exploring the general approach for
axisymmetrically loaded sphere [49]. However, till now the problem for localized conical defect has no published
solution. It should be noted that this solution in case it will be found, will demonstrate singularity of stress and strain
fields along the sphere radius but not only in the sphere center. This means that, following our classification,
localized conical disclination is a linear defect.

As an alternative to the localized conical disclination, the authors of Ref. [50] have described another defect that
can be defined by considering a sphere with a deficit in solid angle 

MY
, which is spread uniformly through the entire

sphere, see Fig. 17b. Such a defect can be visualized as a set of infinite number of infinitesimally thin empty radial
cones with solid angle dc each. Then each of the cones is subjected to the procedure that was described in the
beginning of this section providing the following plastic strain distributed uniformly through the whole volume of
the sphere:

* * ( ).
MY

H a R
 
       (81)

We name such a defect as a stereo disclination or Marks-Yoffe (MY) disclination [28,51-53]. The stresses for MY
disclination are derived from Eq. (81), they have to satisfy boundary conditions on the free surface of a sphere; for
the first time they were given in Ref. [50]:
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can be defined by considering a sphere with a deficit in solid angle
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Then, the stored elastic energy EMY associated with the stress field of MY disclination is:

2 38 1
.

27 1
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G
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  
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 (83)

The elastic properties of MY disclination in a two-phase elastic sphere (see Fig. 17c) were analyzed in Ref. [28],
where the following formulas for stresses and elastic energy of this defect were found:
(i) for R  a

i
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Fig. 17. Conical disclinations in a bulk sphere. (a) Procedure of formation of singular conical disclination (CD) of
strength  in an elastic sphere, (b) distributed conical disclinations – stereo or Marks-Yoffe (MY) disclination of
strength 

MY
, (c) MY disclination in a two-phase sphere.
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where a
1
is the radius of the spherical phase1 and a

2
is the external radius of the spherical layer of phase 2, while G

1
,


1
 and G

2
, 

2
 are used  to denote elastic moduli for phases 1 and 2, respectively.

Obviously, rather cumbersome expressions (84) and (86) transform to simpler formulas (82) and (83) making
a

2 
= a

1 
= a or allowing G

2 
= 0.

7. APPLICATIONS

In this section, we present the information in brief on the use of disclination models in modern Materials Science and
Solid State Physics to explain or even predict various phenomena in 3D and 2D crystalline and amorphous solids.
The emphasis is made on the models exploring the properties of straight wedge disclinations.  We only designate the
areas of application of the disclination approach providing the relevant references. Detailed information on the
subject can be found in the referred articles, but also in a number of books [4,5,54-57] and reviews [6,9,10,58-62]
published during last four decades.

7.1. Disclinations and rotational plasticity

For the first time, the idea to use wedge disclinations in explanation of crystal plasticity phenomena was given in Ref.
[63] in application to deformation twinning. After that, twins were modelled with help of disclination dipoles and
quadrupoles [64-66]. Important feature of all the referred works is an attempt to relate rotation (inclination) of
crystallographic planes peculiar to twinning with the rotational defects – disclinations.

In general, rotational effects were observed in crystal plasticity starting the first application (in the first quarter
of the last century) of X-rays to the analysis of crystal structure evolution in the course of plastic deformation; for
historical survey the readers can be addressed to the Section 3 of Ref. [4]. In the 1970-80s this phenomenon was
analyzed in detail for metals subjected to large plastic deformations, where it got the name – fragmentation [55]. It
was argued that partial wedge disclinations play a crucial role in fragmentation initiation [55,56,70-75].

An important result was the explanation of the development of so-called reorientation bands in crystals based on
the model of disclination dipole motion [5,76,77]. This model with modifications was successfully used in the
analysis of kink band nucleation and propagation in materials [54,58,78,79] including those with layer or fiber
structure [80-83]. Kinking and twining phenomena have a lot in common; they both are realized when the operation
of dislocation slip systems in the direction of the acting shear stress is prohibited or hindered. The difference is in the
fact that the misorientation of crystal parts resulting from twinning is strictly defined by crystallographic constrains
whereas for kink (and reorientation) bands misorientations dependend on the conditions of mechanical loading.

The models exploring properties of wedge disclinations were applied in explanation deformation mechanisms in
polycrystals with nanoscale grains (also known as nanocrystalline materials or nanocrystals) and unltrafine-grained
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materials [56,59,84-90] where disclination related work-
hardening becomes an important feature [89-94]. Finally,
of great importance are the disclination description of
deformation mechanisms in rock materials [95] and the
involvement of disclinations in the explanation of
superplastic behavior of ceramics [96].

7.2. Disclinations and grain boundaries

We start this section with the citate “One of the main
reasons is that the disclination is a rotational defect
while the dislocation is a translational defect. A grain
boundary, being a rotational defect, should be described
more simply by disclinations” taken from Ref. [97], where
it was proposed to model high-angle tilt grain bounda-
ries (GBs) as chains of alternating sign wedge
disclinations and to calculate in such a framework the
energy of GBs in dependence of the misorientation (tilt)
angle. Note that the same article [97] did present the
compact formulas for elastic fields and energies of inter-
acting wedge disclinations.

Later on, the disclination model was modified in Ref.
[98] to find the energies of tilt GBs between so-called
cusp misorientations, for which GBs possess local
minima of energy because of their preferable atomic
structure. The next step in applying disclination ap-
proach to the analysis of GB properties was accounting
for structural units – the elements of GBs of finite length
[99-102]. The disclination-structural units (DSU) model
was then combined with atomistic simulations to calcu-
late GB energies for various materials starting from the
potential of interatomic interactions [103-106]. Based on
DSU model the authors of Ref. [107] developed a unique
approach for predicting the properties (elastic fields and
energy) of so-called nonequilibrium grain boundaries.
Nonequilibrium boundaries demonstrate excess energy
for the prescribed average misorientation depending on
the character of disclination dipole distribution in the
plane of a GB. In Refs. [108-110] the idea on disclination
mediated nonequilibrium state of GBs was extended to
so-called quasi-periodic GBs and GBs of finite extent.

The other important elements of the defect structure
peculiar to conventional crystals but also nanocrystals
– triple junctions of GBs, in many cases demonstrate
wedge disclination counterpart. It was clearly demon-
strated in Refs. [55,57,72,111,112] that nonuniformity and
anisotropy of plastic deformation in neighboring grains
lead to the formation of disclinations in GB junctions.
The strength of such defects that we designate as
Rybin’s disclinations depends on the crystallographic
orientation and intensity of dislocation slip in each of
grains adjusting to the GB junction.

Junction disclinations were recognized to be respon-
sible for the initiation of fragmentation in polycrystals

[55-58,70-75,111-113] and for grain refinement for achiev-
ing nanoscale grain size  in the course of severe plastic
deformation [59,114-117]. In the previous Section we
have already mentioned the role of disclinations in con-
trolling mechanical properties of nanocrystalline mate-
rials [59,84-90]; here we can only note that disclinations
there are at most junction located defects. The evolu-
tion of junction wedge disclination configurations in
nanocrystyalline materials were studied in Refs.
[118,119]. Finally, the techniques for identification of
junction disclinations from the transmission electron
microscopy and X-ray diffraction data were proposed
in Refs. [120] and [121], respectively.

7.3. Crack nucleation at disclinations.
Diffusion in an elastic field of
disclinations

Various configuration of wedge disclinations serve as
strong sources of tensile stresses either in the vicinity
of their cores or even at some distances depending on
disclination sign and the character on boundary condi-
tions. Therefore, disclinations can be considered as
potential places for fracture initiation in solids.

First disclination models for microcrack nucleation
in the elastic field of wedge disclinations were proposed
in Refs. [122,123], where the fracture mechanics analy-
sis was performed accounting for internal stresses be-
ing peculiar to various disclination dipole and
quadrupole configurations. In the following studies ex-
ternal loading was included in consideration as it usu-
ally done when analyzing critical conditions for crack
opening in the vicinity of stress concentrator. Crack ini-
tiation in loaded [124] and unloaded [126-128] disclinated
cylinder (containing a negative wedge disclination) was
considered using analytical models [124-126] and mo-
lecular dynamics (MD) simulation [127,128]. The crack
behavior at various disclination dipole configurations
in loaded infinite elastic media was studied in Refs. [129-
131]. Other models for crack formation in the presence
of disclinations included various aspects of disclination
screening [132-134] and blocked deformation twins
[135,136].

Wedge disclinations also contribute to the processes
of diffusion in crystalline solids. For the first time the
problem of stationary diffusion of point defects in the
elastic field of a single wedge disclination was posted
and solved in Ref. [137]. After that diffusion related ef-
fects were analyzed for disclinations with various physi-
cal applications [138-141]. As a result of vacancy diffu-
sion, a cavity can be formed in the core region of posi-
tive disclination in a cylinder [142] or Marks-Yoffe
disclination in a sphere [142,143].
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7.4. Disclinations in pentagonal rods and
icosahedral particles

Two last mentioned in the previous Section references
already deal with micro-objects demonstrating unusual
for crystalline solids five-fold symmetry. It was argued
as early as in the beginning of 1970s [144,145] that such
objects are formed due to multiple twinning in FCC crys-
tal lattice and the presence of wedge disclinations. Fol-
lowing these ideas, it was proposed to model pentago-
nal micro- and nanorods as a cylinder with a single posi-
tive wedge disclination [28,51,144] and icosahedral mi-
cro- and nanoparticles – as a bulk sphere either with six
wedge disclinations [51] or with Marks-Yoffe stereo
disclination [50,51].

Knowledge on elastic fields and energies of
disclinated cylinder and sphere allowed to investigate
and to predict many structural features being peculiar
to pentagonal micro- and nano-objects, for a review see
Ref. [51]. The main observation that can be well explained
on the basis of disclination approach is the manifesta-
tion of various relaxation processes in the structure of
pentagonal particles and rods emerging with the increase
of their diameter [146-148]. These relaxation processes
were then treated in full details for the formation in pen-
tagonal objects additional dislocations [149-151]
disclinations [152,153], cracks [154], or lattice-mis-
matched surface layers [52,53,155,156].

7.5. Disclinations and amorphous state

Wedge disclinations are recognized to be essential ele-
ments of internal structure of glasses and amorphous
solids [157-162]. They are responsible for elimination of
long-range translational periodicity peculiar to conven-
tional crystals and constitute themselves in the appear-
ance of odd-member rings of atomic bonds.

Elastic properties of disclinations were explored in
calculating the difference of internal energy between
amorphous and crystalline state [26], in the analysis of
flow stress of metallic glasses [163], and in the analysis
of the structure of crystal-glass interfaces [164].

7.6. Domains in ferroelastic films

Film and layers of various crystalline materials may ex-
hibit phase transformation under mechanically con-
strained conditions when they are deposited on the
substrate [165]. If the phase transformation is accompa-
nied with a change of the symmetry of elementary crys-
tal cell, elastic domain structures develop in the film
interior, e.g. see Refs. [166,167].

To analyze important features of such domain struc-
tures including the dependence of the domain structure
period on the film thickness a number of disclination

based models has been developed [168-177]. In these
models, the effects of mutual disclination screening in
multipole configurations as well as disclination interac-
tions with film free surface were taken into account.

7.7. Wedge disclinations in graphene

In graphene – 2D material with a pristine crystal struc-
ture made of carbon atom hexagons, wedge disclinations
are natural defects that change local symmetry of atomic
rings from six-fold to five- or seven-fold and even to
four- or eight-fold [24,60].

Disclinations were used in analyzing the properties
of carbon allotropes: fullerenes [178], nanotubes [179],
nanocones [180], and graphene [60] exploring both con-
tinuum [181-183] and atomistic [184-187] approaches.
Useful results were delivered when modeling with the
help of disclinations the properties of grain boundaries
(GBs) and interfaces in graphene that included the de-
scription of non-equilibrium GBs with excess energy [182]
and zero-misorientation interfaces [187] as well as when
analyzing crack initiation at disclinated GBs [188].  In
last decade, pseudo-graphenes – planar graphene allo-
tropes with periodically distributed disclinations, at-
tracted special attention of researchers [189,60,61]. A
remarkable fact on pseudo-graphenes is that they fist
predicted only theoretically were recently experimen-
tally synthesized [190].

8. SUMMARY AND CONCLUDING
REMARKS

In this review, we have reported on the elastic proper-
ties, e.g. elastic fields and elastic energies, of straight-
linear wedge disclinations in the cases of their interac-
tion with a free surface of various geometries: planar,
cylindrical, and spherical ones. As a starting point the
solution for elastic fields generated by an isolated wedge
disclination in an infinite elastically isotropic continuum
have been used. This solution has no direct physical
meaning but can be used for construction of the fields
of screened disclination configurations: wedge
disclination dipoles and quadropoles and dislinations
in the bodies of finite extent.

The following boundary-value problems of plane
elasticity for single wedge disclination and their ensem-
bles have been considered: disclinations parallel to a
free surface of a half-space, disclination in the plate of a
finite thickness, and disclinations in uniform and two-
phase cylinders. In addition, the interaction of wedge
disclinations with interfaces have been addressed.

The solutions of three-dimensional elasticity prob-
lem have been given for wedge disclinations, whose
lines are perpendicular to a free surface of a half-space,
or to the surfaces of the plate of a finite thickness. For
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bodies with spherical boundaries the cases of bulk and
hollow spheres, as well as disclination piercing a spheri-
cal pore have been analyzed. For uniform and two-phase
bulk sphere the elastic properties of Marks-Yoffe stereo
disclination have been also delivered.

Finally, possible applications of the elasticity solu-
tions for wedge disclinations have been discussed. It
has been demonstrated that the disclination properties
become a controlling factor when considering rotational
plasticity in solids, grain boundaries and their junctions
in conventional polycrystals and nanostructured mate-
rials, crack nucleation and initiation of ductile fracture,
pentagonal rods and icosahedral micro- and
nanoparticles, amorphous solids and glasses, domains,
and twins in ferroelastic films adjusted to a bulk
substrate, and defects in graphene.

Except isotropic linear elasticity more involved cases
for materials properties were probed when studying the
properties of wedge disclinations. Elastic anisotropy was
taken into account in Refs. [191-197] whereas nonlinear
elasticity accounting both for geometrical and physical
nonlinear effects was used in Refs. [198-202] in finding
disclination elastic strains and stresses. Other variants
of elasticity models applied to wedge disclinations in-
cluded exploration of gradient elasticity [203,204], con-
sideration of surface/interface stresses [205,206], or the
analysis in the framework of micropolar elasticity [207].

In conclusion, it is worth to note the relation of wedge
disclinations to singularities of physical fields of vari-
ous nature. In this connection, gauge theory [208] and
topological approach [209] can be used for the analysis
of the media with disclinations. Moreover, the analo-
gies with general physical theories of Macro- and
Microworld can be established [210].
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