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Abstract. The review presents up-to-date information on the analytical solutions of the isotropic elasticity
boundary-value problemsfor straight wedge disclinations. The considered plane el asticity problemsinclude
those for disclinations in uniform or two-phase cylinders, at afree surface of a half-space, and in aplate of
finitethickness. Three-dimensional problemsunder analysisdeal with wedge disclinationsin abulk sphereor
spherical layer or with the defects with the lines being normal to a free surface of a half-space or to surfaces
of the plate. Applications of the given solutionsto explanation and prediction of various structure dependent

properties of solids are briefly discussed.
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(a)

1. INTRODUCTION

Nowadays, disclination approach demonstrates its im-
portance in the description of various phenomena in
condensed matter, for valuable reviews we address the
reader to Refs. [1-6]. It isgood to know that the notation
‘disclination’ (or originally ‘disinclination’) were first
introduced by Frank in 1958 [7] when considering sin-
gular lines and paints, i.e. defects, in the orientation
field of rod-likemoleculesof nematicliquid crystals. Simi-
larly, disclinations can be found in the nonuniform dis-
tributions of spinsin magnetics of different type[2,3].
However, disclinations were explored much earlier
in mechanics of deformable solidswhen Volterra[8] in-
vestigated the stress-strain states of unloaded hollow
elagtic cylinder with multi-value displacement field that
correspondsto asolid body motion. Volterracalled such
dtates distorsions (Fr.), which result from the proce-
dure of the cutting of the cylinder in the planeparallel to
the cylinder axis, trandating or rotating relatively the
surfaces of the cut, and then gluing the surface in the
final configuration. It is assumed that in the described
process (now known as Volterra process) the material

(b)

(@

Fig. 1. Volterraprocessfor the formation of negative wedge disclination in ahollow eastic cylinder. () Initial cylinder
with a cut; (b) relative rotation of the cut surfaces about cylinder axis with the formation of wedge-like gap; (c)
insertion of the sector of the material in the gap; (d) final configuration of disclinated cylinder with internal elastic
strains and mechanical stresses.

isinserted in the emerging empty spaces or taken out
from the regions of material overlap. Fig. 1 shows the
exampleof theredlization of Volterraprocessfor awedge
disclination. In this review article, we focus on such
type of Volterra distorsions only. For a sake of com-
pleteness, we have also to mention straight-linear twist
disclinations, screw dislocations, and edge dislocations
[1,4]. Wedge disclination is characterized by the axial
vector o — Frank vector, which is parallel to the cylin-
der axis. Its magnitude is disclination strength and is
equal to the angle of mutual rotation of the surfaces of
the cut in the process of the disclination formation. De-
pending on the sense of the cut surfaces rotation wedge
disclinations can be positive or negative: for the nega-
tive ones, the wedge of material isinserted during their
formation, whereas for positive ones, the wedge is ex-
tracted [4].

As it will be demonstrated below straight-linear
wedge disclinations possess remarkable properties:
when placed in an imaginary infinite elastic continuum
singledisclination generates el astic strains and mechani-
cal stresses that diverge both in the defect core, and at
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large distance from a disclination line [4,6]. Such
unphysical features can be however corrected with re-
ducing disclination elastic fields either by self-screen-
ing in the disclination ensembles of alternating (plus
and minus) signs, or by external screening under the
influence by free surfaces of the finite size elastic bod-
ies [4,9,10]. The second type of screening for wedge
disclinationsis considered in detail in thisreview.

In Section 2, we provide anecessary background on
the linear elasticity for defects in isotropic continuum
and discuss possible types of boundary conditions
used for the solution of elasticity boundary-value prob-
lems. Then, in Section 3, we give useful formulas for
mechanical stresses for a single wedge disclination in
aninfiniteelastically isotropic medium. In Section 4, we
start with classical elasticity solutionsfor adisclination
inahollow isotropic elastic cylinder and later consider a
disclinated bulk cylinder that can be also radially
nonuniform. In Section 5, we give solutions of plane
elagticity problems for disclinations in the case of pla-
nar interfaces. Section 6 is devoted to spatial elasticity
problems solved for wedge disclinations. Finally, in Sec-
tion 7 we briefly discuss applications of the listed solu-
tions in various physical models that involved wedge
disclinations. We conclude with abrief Summary.

2. BACKGROUND

2.1. Foundations of linear isotropic
elasticity

We are interesting in the solutions of linear isotropic

elagticity problems for disclinations. In the linear elas-

ticity approach, displacements components U, are re-

lated to the components of symmetric strain tensor ¢,

by:

1({ou ou,
g =— +—m
mo2\ox, ox @

where Cartesian coordinatesx areused andi,mk=1,2,3.

Hooke’s law connects the components o, of thesym-
metric mechanical stresstensor with elastic strain com-
ponents ¢,

Gii=2G(s”+ M 85”);
1-2v

1 ( v 5 ) b
g =—| 0 — co. |,
oagU ! 14y ! (2b)

where theelastic constantsfor anisotropic elastic body:
shear modus G and Poisson’s ratio v, are introduced, 6”.
is the Kronecker’s delta, € = g isthetrace of strainten-
sor, ¢ = 6, isthe trace of stresstensor. Note that in the
definition of tensor traces and in the following Einstein’s
summation ruleisapplied.

(2a)

Stresses in the body interior in the absence of vol-
ume forces obeys the following equations of equilib-
rium:

80” 0
x 0 (3)

All together the system (1) to (3) has 15 equations
for 15 quantities. Its analysis is the subject of linear
theory of elasticity, when in standard cases compatible
strain fields in single-connected elastic bodies are in-
vestigated [11]. These cases deal, for examples, with
examining strain-stress of the bodies of various
geometries loaded by external forces or with given
displacementson apart of thebody, i.e., surface, line, or
point.

Elasticity equations work also for the bodies with
internal mechanical stresses caused by eigenstrains
(self-strains) of variousorigin[12]. Typical example of
eigenstrain gives thermal expansion; the other impor-
tant example is related to the spontaneous deformation
that appears because of a phase transformation. For us,
themost interesting will be consideration of disclinations
as carriers of rotational plastic eigenstrain.

2.2. Boundary conditions for easticity
problems

It is common in the theory of elasticity to subdivide
boundary-value problems into two main classes: when
on the surface that bound the considered elastic vol-
ume are prescribed as function of coordinates x  either
(i) tractions (forces) T(x ) or (ii) displacementsu(x ).
From aview of practical applications, the most im-
portant are the following boundary-val ue problems.
A) Elastic body loaded with external applied forcesT.
For this case, the conditions

le n|

=T (4)

S

hold with n(x) being the components of the surface S
normal unit vector n at each point x of the surface. Note
that the surface S can be either infinite or finite.

For source of internal stresses important are the
boundary-val ue problems with zero tractions:

Tk =0y s 0. (5)

This corresponds to the presence of unloaded surfaces
for an elastic domain containing for example a
disclination. Those can be free surfaces of ahalf-space,
aplate, or aninfinitecylinder.

B) With the restrictions imposed on the surface
displacements. This can be the rigid condition, when
on the surface S
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ul, =0 (6)

In most general case the displacements on the surface
can be given in the form of some (not necessary con-
stant) functions:

uls =o,(x)- (7)

When used for external surfaces of an elastic do-

main both conditionsA or B together with the system of
Egs. (1) to (3) of linear isotropic elasticity provide asin-
gle-valued solution, which also is non-singular in the
domain interior. Expanding the conditionsA to internal
surfaces gives the other class of solutions, e.g. for a
Mode | crack, whereas the application of the condition
of Eq. (7) to internal surfaces lead to the definition of
Somigliana dislocations [13]; we discuss the last case
insome detailsbelow in Section 2.3.
C) Phase boundaries or interfaces. In this case we as-
sume the presence of the boundary between two do-
mains with different elastic moduli, for example G, v,
and G,, v,, with the continuity of displacements and
tractions across the interface S.

u =Uu

1)
s

(2)
i

; (8a)

S

1) (2)
oiin| =of (8b)

ki

S
The components of stresses that do not appear in Eq.
(8b) can be discontinuous at the interface S together
with discontinuity of some strain components. In the
limit cases, the solutions found with the conditions of
Egs. (8) turn in the solutions for boundary-val ue prob-
lems for afree surface (with G,=0) or arigid boundary
(With G,=c0).

D) Slipping interfaces. Such boundaries do not transmit
shear loads, normal stresses and displacements remain
continuous across the interface, but tangential
displacements can demonstrate discontinuities on sur-
faceS

@ _® .
ui rlIS_ui nls’ (9a)
() _ (2 .
no, I"|||S =No, I"I||S, (gb)
@ _ @ _ 2 _
S Ou n||S _tk Oy n||S =S80y n||S -
@) (9¢c)

tkckl n |S =0,

where s_and t,_are components of two mutually
orthogonal unit vectors s and t laying in the plane tan-
gential to the surface S.

The surfaces with conditions of Egs. (9) model the
grain boundaries in polycrystals under the realization

of grain boundary diding and cracks of Mode Il and
Modelll under external loading.

Real physical situations canlead to the combination
of boundary conditions on the external surfaces and/or
interfaces. The obviousexamplesare acrack at the phase
boundary or adisclination in athin layer deposited on
the substrate with different elastic properties. It isuse-
ful to note that, in general, boundary-value problems
can be classified aswell-posed and ill-posed ones[14].
Thewell-posed problem can be solved (it | east theoreti-
cally) and give aunique solution, whereasill-posed prob-
lems usually do not have enough mathematical condi-
tions to find the solution. In this last case additional
physical arguments can be applied to turn the ill-posed
boundary value prablem to practical results.

2.3. Geometry and elasticity of
line/surface defects in an infinite
continuum

Setting the conditions for displacements on internal
surface one can define a defect of general line/surface
type — Somigliana dislocation [13], as the generalization
of the Volterra process given in Fig. 1. For Somigliana
loop dislocation shown schematically in Fig. 2, wefirst
select the spatial configuration of the cut surfaceT rest-
ing on the defect line L. Then the surfaces of the cut
experiencerel ative displacement u(r)| ., whichisthefunc-
tion on the position r onT'. As it was already noted for
Volterraprocessin Introduction, the material isinserted
in empty spaces (voids) or taken out fromthe regions of
materia overlap; thisis shown schematically inFig. 2b.
Volterradistorsions, namely trand ation dislocations
with their main characteristic known as Burgers vector
b and disclinations characterized by Frank (rotation) vec-
tor ® and the position in space re of the axis of this
rotation vector can be viewed as special case of
Somiglianadislocationswith

ul, =-b+ex(’-r) (10a)
or in component form
ul =-b+e, 0 (X -x) (10b)

where e " isthe permutation symbol, X, are components
of theradius-vector r, and x’ are the components of the
vector that ends at apoint of theline defining the axis of
rotation. It is important to note that the stress-strain
state for elastic solids with Volterra distorsions does
not depend on the position in space of the surface I’
that is used in the defect definition [1,4] and therefore
dislocations and disclinations are considered as line
defects. For ageneral Somiglianadislocationthe choice
of the surface T influences the distribution and conti-
nuity of some components of stresses and strains.
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(b)

b
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Fig. 2. Line/surface defect with discontinuity of displacement u(r)].. (a) Surface G resting on aclosed defect lineL;
displacements of the cut surfaces for Somigliana (b) and Volterra (c) dislocations; in dashed region the material is

inserted.

Using different “language”, dislocations and
disclinations can be introduced in continuum with the
help of self-distortion [3” [12]. For example, inthe case
of the planar disclination loop laying in the plane X, its
self-distortion can be written as[15]:

B =<, ®,(¢ =x)8(x,)H(D), (11)

where 8(2) is the Dirac delta-function and H(T') is the
Heaviside step-function defined for the part of the plane
bounded by the line of the loop.

Inan elastic material, anisolated disclination can be
also defined as the line defect generating constant vec-
tor for theintegral [16]

o, =3Sd|n K (12)

wherek, _arethe components of elastic bend-twist ten-
sor [17] and theintegration is performed along an arbi-
trary contour y that captures the defect line.

It was shown by Mura[12,18,19] thatinlinear elastic
continuum the el astic fields of isolated disclinations and
dislocations can be found on the base of the total
displacements urTn given by the following formula:

e oG, (r' -
ul(r) = [, (r)C,, %dv, (13)

where C,, ae the elastic constants; G, (r’-r) is Green
funct|on of the elastic media[12].

Equation (13) can betransformed to the easy-to-use
expression[19]:

u(ry=
"JH%BU Wl ep(s 1) dg dg dg. (14

Here [3”. and L, areFourier transforms of the tensors [3J
and G, correspondingly:

B =20 ] [, exp(ie rydx dy dz;

L, =2n)*[ [ [G, exp(-ig-r)dxdy dZ.
For isotropic continuum

C,, =G[2v8,5, /(1-2v)+8,8, +38,5,],

ji K il jk

L =(2n)*[20-v)Es, -8, ]/[26a-ve'],

6 is the Kronecker’s symbol Gisashear modulus, v is
the Poisson’s ratio, &’ = é +§ +§
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—_disclination
line

(a)

(b)

Fig. 3. Geometry and coordinate systems used in calculation of elastic fields of wedge disclinations in isotropic
elastic media. () a straight wedge disclination with Frank vector o = we,; (b) cylindrical r,¢,z and Cartesian x,y,z

coordinate systems associated with disclination line.

Total displacements provide a possible way to find
total distortions B} and total strains ¢, , then elastic
strains € and stresses viaHook law (for isotropic me-
diadefined viaEg. (29)):

B ou,
o oX, -
. o (15a)
[]]eg.B;C,L, exnlic 1) dg, dg de,,
1
& ZE(BL» +B.)., (15b)
€ = Erp ~ By (15¢)

wheree =(B _+p )/2.
m m p
Itisknown that for straight-linear defects[9,20] and
loopswith rectangular geometry [9,21] elagtic fieldscan
be expressed in aclosed formincluding only elementary
functions, whereasfor circular loop defectsspecia func-
tionswill beinvolved [9,15,22].

3. STRAIGHT WEDGE
DISCLINATIONS IN INFINITE
ELASTIC MEDIA

3.1. Stresses for a straight wedge
disclination in an infinite isotropic
continuum

Consider a straight disclination whose line goes along
the axis z of Cartesian coordinate system x,y,z (we also
use related cylindrical coordinatesr,¢,2). For awedge
disclination with re= 0 Frank vector coincideswith the

Z- axis, too, asitisshownin Fig. 3. Itisobviousthat for
r — oo, displacementsgiven by Eq. (10) acquireinfinite
values. Inturn, thisleadsto infinite (unphysical) distor-
tionsin an elastic continuum resulting fromthe realiza-
tion of Volterra process. Self-distortion of such wedge
disclination can be writtenin the following form:

B, =—ox3(y)H (). (16)

Herewe have chosen ahalf-plane (x> 0, y = 0) asthe cut
surfaceT’, ® = we, with @ being the disclination strength.

Exploring Egs. (15), (16), and (2a) one finds the
stresses for a wedge disclination in an elastic infinite
medium. In Cartesian coordinates the stresses for a
straight wedge disclination are[20]:

Go
XX =—X
2n(1-v)
1 2
(—Iog(x2+y2)+ 2y —+ Y, (17a)
2 X +y 1-2v
Go
o, =——X
Y 2n(l-v)
1 2
(—Iog(x2 +y)+ zy —+ Y, (170)
2 X +y 1-2v
c,=Vv(c,+0,)=
G 1
&(Iog(xz +y°)+ j (17c)
2n(1-v) 1-2v
Go Xy
Oy = (17¢)

2n(1-v) X* + y*
where ® is the disclination strength (or charge) — the
magnitude of Frank vector with the sign “+” or “-” de-
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pending on the manipulation with the material during
Volterra process with “-” corresponding to the inserted
wedge of material. Zero components of stresses are
omitted in Egs. (17) (and throughout thewholetext); the
form of the component o, is caused by the state of
plane strain for a straight wedge disclination.

Because of rotational nature of disclination defects
the stresses have the simplest representation (no de-
pendence on polar angle ¢) in cylindrical coordinates:

Go (
=———— logr +
2n(1—v)

Go ( 1-v )
c,=———|logr+ ,
2n(1—v) 1-2v

( ) vGo 2logr 1
c =v(c_+0 )=— + ,
“ T 2n(1-v) 1-2v (18c)

wherer2=x2+y2

Found stresses sati sfy equilibrium Egs. (3) and dem-
ongtratetypical featuresthat are peculiar to disclinations
only. Elastic strains and displacements leading to the
relations for stresses defined by Eqgs. (17) or (18) obey
conditionsof Egs. (10) and (12). Normal stresses of sin-
gle wedge disclination diverge as logr both for r — o
and r — 0. The logarithmic dependence of stresses on
coordinates is unphysical because log-function can
operate only dimensionless variables but not the coor-
dinates with the dimension of length. This means that
the coordinatesin Egs. (17) and (18) should be normal-
ized to some length. Such a normalization for straight
disclinations is possible in the case of multipole
disclination systems or for disclinations in the bodies
of finite size. The analysis of the second possihility is
the main subject of thisreview. In general, therelations
for elagtic fields of disclinations in infinite continuum
can be only used as building blocks in construction of
the relations for multipole configurations and as start-
ing point for finding the solutions of elasticity bound-
ary-value problems.

Itiswell known that in the case of plane strain, i.e.,
g,,= 0, three independent components of stresses can
be found with the help of Airy stress function y, which
satisfiesthe biharmonic differential equation [11]:

" 1- 2v)' (18a)

(18b)

AAy = 0; (19)
o’y o’y o’y

Op = 2’Gw:az’cxy:_a ’
% X X0y (20a-d)

The case of wedge disclinations fits the condition of
plane strain, thus Airy stress function can be advanced
to reproduce the stresses from Egs. (17) by exploring
the relationships (20). Such stress function was pro-
posedinRef. [23]:

Go

y=———r"logr =
4n(1-v)
G 2 2 2 2 (21)
Wm_v)(x +y )|Og(x +y )

It easy to check that the stresses found with the help
coincide with those given by Egs. (17) with accuracy to
constant term. In many cases the solution of elasticity
problems for wedge disclinations can be searched hav-
ing stress function y as starting point. It worth to note
that stress function of an edge dislocation can be de-
rived from Eq. (17) by differentiation with respect the
coordinate (x or y). The property of representation of an
edge didocation in the form of wedge disclination di-
poleisuseful for the solution of easticity problemsboth
for didocations and for disclinations; this feature was
explored for thefirst timein Ref. [23].

3.2. Quadrupoles of wedge disclinations

The energy stored in any elastic field can be cal culated
by integrating elastic energy density over the whole
volume of the system:

1
:—jc.. e (r)dV (22a)
2 v ij ij
or in the case of the defect by the equivalent approach
developed by Mura[12] basing on the consideration of
plastic distortion B, (or eigenstrain ¢, ) of the defect:

1,. 1,.
E=— [0, ()& =~ [&, ()0, (N V. (220
27 2,

In the case of asingle wedge disclination or evenin the
case of awedge disclination dipole, which isformed of
two opposite sign disclinations, the calculations with
Egs. (22) giveinfinitevalue for the el astic energy. How-
ever, wedge disclinations quadrupoles provide the ex-
ample of disclination systemsin infinite media with fi-
nite stored elastic energy. Such systems, also known as
self-screened disclination configurations, are useful for
practical applications; they were studied in necessary
detailsin Refs. [4,10,24].

The self-energies for quadrupoles, shown in Fig. 4,
have the following algebraic representations:
(a) for the parallelogram (Fig. 4a)
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e

(c) (d)

+O -® - +®
2r,

T - v
+© 7/26 +0
— 2([1 25{2 rl rl
2Fl v 2a L 2a v
(e) ®
Fig. 4. Self-screened disclination quadrupol es, adapted from[24]. Parallelogram (@), special casesof parallelogram: a
rectangle (b), arhombus (c), aquadrate (d), and line quadrupoles (e) and (f) as degenerate parallelograms.

Go* [, 16r
par = I’1 ln 2 2 2 2 +
4n(1-v) (r”+r, =2r 1, cosO,)(r” +r, +2r 1, cos6,)
) 16r r’+r —2r 1, cose, (23a)
r, In—— P— +2r, 1, cosO, In—— ,
(r”+r, =2r 1, cosO,)(r” +r, +2r 1, cos6,) r°+r, +2rr, cos6,
(b) for therectangle (Fig. 4b)
Go’r}
. =——(In4—(1-cos0,) In(1-cos0,) — (1+ cos0,) In(L+ cosh,) ) =
2n(1-v)
G 2 2 + 2 2 + 2
DO G TR (23b)
n(l-v) a &,
(c) for therhombus (Fig. 4c)
E Go’ r’lIn 4 r)n 4
= =+ |,
R Y)Y (A o W (A 4 (23¢)
(d) for the square (Fig. 4d)
Go'r,’ 2G(1+v)e’a’
o =———IN2=—"——1In2, (23d)
n(l-v) T
(e) for theline quadrupole (Fig. 4€)
Go’ 4r? ar; o+
E|q=—m roin——=—r’In—=2—-2r 1, n{rh) )
2n(1-v) (r'—=r)) (r"—r)) (r, —r,)
Go’ - c-a + 23e
= aflnazzt’il+aflnazzal+2alazlnu , L>1, a, >a, (23€)

n(1-v) o) a 3 -3
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(b)

Fig. 5. Introduction of apositive wedge disclination of strengthw in ahollow cylinder. Schematicsfor cylinder cross-
section in the process (a) and after (b) wedge-like material sector extraction.

(f) for theline quadrupol e (Fig. 4f)

Go'r] 4Go’a’
E, = In2= In2.
n(l-v) n(l-v)

(23f)

In Egs. (23), the energies are given per unit length of
disclination lines, which spread normally to the plane of
schematics in Fig. 4. For the used quadrupole param-
eters,i.e.r, r, a a, a, and 0, we have adopted their
meanings in accordance with those shown Fig. 4. Note
that intheoriginal work, see Ref. [24], theformulaswere
given for the case of plane stress, but not plane strain.
They arerelated by asimplerenormalization procedure;
one just needs to substitute the multiplier G/(1-v) with
G(1+v)inEgs. (23).

4. WEDGE DISCLINATIONSIN AN
ELASTIC CYLINDER

4.1. Wedge disclination in a hollow
cylinder

Historically first solved boundary-value problem for
disclinations was the problem for a wedge disclination
in a hollow elastically isotropic cylinder [8]. It is sup-
posed that a positive wedge disclination isformed when
a wedge-like sector of material is taken out from the
hollow cylinder withinternal and external radii r and R
respectively, asit is schematically shown in Fig. 5. We
assume that the edge of the wedge-like sector of angle
® coincides with cylinder axis. For comparison, for a
negative wedge disclination shownin Fig. 1 the wedge-
like sector isinserted in the cut cylinder.

Presenceof internal and external freelateral cylinder
surfaces means that for both of them the boundary con-
ditions for stresses of the type of Eq. (5) hold:

Gkr

. =0, k=r1,0,2

s (24)
The described elagticity boundary-value problemisclas-
sical inthetheory of elasticity; its solution can be found
in numerous el asticity monographs and handbooks. For
example, following Ref. [11] we get for stresses:

r roz(Rz_rz) r

Go log log—= |;
c =— ———Zlog— |;
" 2n@-v) R F(R-rf) R (253)

I r rOZ(R2+rZ)I r,
c = log—+——F——log— |;
" 2n(l-v) R r*(R-r7) R (25b)
vGw
6,=Vv(c, +0, )=—T"X
" 2n(1-v)
r 2r’ r 25
1+2log—+——"—log—= |. (25¢)
R R-r’ R

Remarkable feature of the disclination solution given
by Egs. (25) isnot only compl etefulfillment of the bound-
ary conditions

S | =0, (26)

r=R

but also, the absence of the net force in the z-direction:

F,=[o,(Nds=2nfc ()ydr=0. 27)

This means that the found stresses can be used for the
analysis of wedge disclination behavior in finite height
cylinders with high height/diameter aspect ratios with-
out introduction of additional termsaccounting for axial
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loading. Of course, near cylinder ends the solution
should be modified to include three-dimentional char-
acter stress-strain state that will lead to the appearance
of the non-uniform (in dependence on coordinate r)
displacements of cylinder ends. Such an effect isclearly
seen in the photographs of wedge disclinations models
made from gelatin in seminal Volterra’s work, see Ref.
(8.

Calculationswith the help of Egs. (22a) or (22b) re-
sult in the energy of wedge disclination in the hollow
cylinder [25]:

. Go'R [R-1’ 4 Y
E = 2 T a2 2 |Og— ' (28)
16n(1-v) R R —r; R
Here and below for plane strain problems we write the
energies per unit length of adisclination line.

It is obvious that the disclination energy does not
depend on its sign. Thisis adirect consequence of the
linearity of elasticity Egs. (1) to (3) we use. In the con-
sidered geometry the disclination energy is controlled
by two screening parametersr, and R. Onelimiting case
concerns the formation of adisclination in athin cylin-
drical shell of constant thickness A with the radius of
the shell R — oo; under such conditions Eq. (28) ac-
quirestheform:

Go’A’
== 29
8r(1-v)R (29)

c

The other limiting case that deals with so-called singu-
lar disclinationsis considered in detail in the next Sec-
tion.

4.2. Singular wedge disclinationsin a
cylinder

Relation for stresses of a singular wedge disclination,
which line coincides with the axis of the bulk cylinder
with external radius R, can be determined from Egs. (25)
allowing r,— 0 and transforming to Cartesian coordi-
nates:

Go rooy
o ,=————|log—+=|;
2n(1-v) R r

(30a)
Go (Io +xzj
G = —+—
Y 2n(-v) R r’ (30b)
v( PR (Zlo r+1j-
c_=v(oc = — ;
z « O =) g R (30c)
Go Xy
Oy =", (30c)

where r2=x2+y?, as before.

There is an obvious similarity with the stresses of
singular disclinations in infinite isotropic continuum,
seeEgs. (17) and (18): the samelogarithmic dependence
on r ispresent with singularity for r — 0. However, the
log-functionsin Egs. (30) are physically correct because
radial coordinate is normalized by screening length R.
Note that stressesfor a singular wedge disclinationin a
cylinder can be obtained with help of thefollowing Airy
stress function:

. Go log ror’
Xo = _ I
4n(l-v) R 2 (31)

The energy of a singular wedge disclination in a
cylinder isderived from Eq. (28) inthelimitr — O:

.  Go’R
° 16r(l-v) (32)
It follows that the elastic energy of a singular wedge
disclination has no dependence on the core radius
(whichisequivaenttor ), tothe contrary to well-known
result for dislocations [1]. Thisis related to the linear
dependence of displacements of the cut surface in the
Volterraprocessof disclination formation ondistancer.
For completeanalysis of wedge disclination behavior
inacylinder one needsto know the properties of awedge
disclination shifted with respect the axis of a cylinder,
seeFig. 6. Thesolution for stresses of such adisclination,
e.g., disclination e, displaced from coordinate origin by
r, along x-axis, is set by the following Airy stress func-
tion[26]:

Fig. 6. Schematics for the interaction of wedge
disclinationsin acylinder. Two wedgedisclinationswith
strengths ®, and w, are shifted with respect cylinder
axisby r, andr,, correspondingly; angle 0,, givesrela-
tive angular position between disclinations.
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Go

c 1

Rz((x_rl)2+y2) rz(rlz_Rz)
Xrl = - :
8n(l-v)

(xr —R*)* +y°r’ R?

((x=r)*+y")log (33)

We do not provide here cumbersome formulas for stress tensor components that are derived by exploring Egs.
(33) and (20) but rather discuss the pair interaction energy E;, between two arbitrary placed disclinations in a
cylinder, as shown in Fig. 6. This energy can be found as work done during the formation of disclination w, in the
stressfield o, of the disclination o,:

E.=o,[c) (o), (r-r)dr (34)

T2

that gives[26]

2 2 2 12
Ro—r -1, +—

(35)

Go.o R*(r®+r”—2rr, cos® r’r?
E, =ﬁ{(rj +1—2rr,cos0,)In (1, +1, ~2n1, 0s0,,) |
8n(l-v

2.2 2 4
rr, —2Rrr, cosO, + R

From Eq. (35) one can get:
(i) withr,=r, ®,= o, and 6 ,= O the self-energy E:J of wedge disclination shifted with respect the cylinder axis:

T2 " 16r(l-v) R

(36)

which reproduces for r,=0 the energy of unshifted disclination of Eqg. (32);
(if) with r =0 or r,=0 the energy of pair interaction of two disclinationswhen one of themisin the central positionin
the cylinder; this particular result wasfound in Ref. [27].

Total energy W, of the disclination system, shown in Fig. 6 can now easily found as

W, = E,+E, +E}. (37)
Note that configurational forces acting on disclinations in the considered system are defined by the dependence of
the total energy on the system parameters, but not of separate energy contributions.

4.3. Wedge disclination in a two-phase cylinder

For singular wedge disclination in a two-phase cylinder (this case is shown schematically in Fig. 7) boundary
conditions of type A, see Section 2.2, must be fulfilled at the external cylinder surface, i.e. for r=R,, and boundary
conditions of type C at theinterfaceinside acylinder, i.e. for r=R .

¥

Fig. 7. Wedge disclinationin atwo-phase cylinder. Inthedomainr < R elastically isotropic material is characterized
by shear modulus G, and Poisson’s ratio v, whereasfor domain R <r <R, by shear modulus G, and Poisson’s ratio
v,. Thedisclination line and Frank vector coincide with the cylinder axis.
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Solution for this problem was given in Ref. [28]. The stresses should be written separately for two domains:

(i)forr<R:
. __Go [l 2G,(1-v,)R’ o0 Rl}

“T:mav)| R G- 2v)(R-R)+G(@-2v,)R+GR R (38a)
p__Go 2G,(1- V)R R
=————|1+log
O 27T(1—V1){1+ R G(1 2v)(% R)+G(l 2v,)R* +GR o9 Rj (38b)
G; =v1(cir +cl¢); (38c)

(i)forR<r<R;

o =0 [IogL [ 26,-v.)R 1J(R:_r2)azlogi}, 39
" 2n-v)| R (G,@-2v)(R-R)+G@-2v)R+GR J(R-R)r* "R (393)

. Go r 2G,(1-v,)R (R+r )R R
=—=2  |1+log—+| 1- log— |,
O 211(1—V2){1+ ong+(1 G2(1—2v1)(R22—Rf)—i—Gl(l—sz)Rf+GlR§J(RZZ—Rf)I’Z OQRJ (3%b)

Gi = vz(cfr + Gim), (39c)

where G, v, and G,, v, are shear moduli and Poisson’s ratios for domains 1 and 2, correspondingly.

It is easy to check that the stresses defined by Eqgs. (38) and (39) satisfy the boundary conditions mentioned
above. InlimitcasesG,=00r G,=G,=G, v,= v, = v, these formulasreproduce the stresses for awedge disclination
inauniformcylinder of radiusR or R,, respectively, whereaswith G, = 0 one getsthe solution for hollow cylinder, see
Egs. (22). The other limit case for adisclination with rigid core can be obtained when assuming G,>>G,. This |ater
case has been considered in detail and in other formulation in recent work [29].

The energy of awedge disclination in two-phase cylinder is[28]:

£ G,o'R {1{(1—%)@1 _1j52+
16n(1-v,) @a-v)G, R

26,(1-v,)R _1] 4R (,O R ) (40)
2 2 ) 2 2 2 g )
G,(1-2v)(R-R)+Ga-2v)R+GR J(R-R)\| R

Thisformulatransformsto Eq. (31) and Eq. (26) with R =0 and G,=0, respectively.

The elastic behavior of wedge disclinations in various inhomogeneous structures of cylindrical symmetry was
also considered. Authors of Refs. [30] and [31] studied the elastic interaction of wedge disclination dipoles with
circular and annular inhomogeneities embedded in infinite matrix, respectively. The elasticity solution for awedge
disclination dipoleinteracting with a coated circular inhomogeneity in an infinite medium was found in Ref. [32].

Concluding this section, it makes sense to mention the analysis of the elastic behavior of wedge disclinationsin
afunctionally graded cylinder recently performed in Ref. [33].

5. PLANE ELASTICITY FOR DISCLINATIONS NEAR PLANAR INTERFACES
5.1. Wedge disclination at a free surface

When adisclination approaches to the surface of acylinder, e.g. disclination o, in Fig. 6, the character of screening
in the system changes: the distance to the nearest cylinder surface d=R-r, becomes the dominant screening
parameter. In the limit r,, R — oo and d = const we have awedge disclination in a half-space. Airy stress function
(defined in the coordinate system shown in Fig. 8) for such adisclination can be easily derived from Eq. (32):
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Fig. 8. Wedge disclination parallel to free the surface of a half-space. Disclination is at the distance d from the free
surface. The origin of Cartesian coordinate system X,y,z is chosen to be at the surface.

. Go . (x+d)? +y?
v =—((x+d)" +y )log—————, 41
8n(1—v)( ) (x—d)* +y* (41)
where, as before, o designates the disclination strength.
Exploring Eq. (41) together with Egs. (17) leadsto the stresses of the wedge disclination in a half-space:
Go 1. (x+d)’+y y’ Yy’ y: —(x—d)*
On = —lo 2 2 + 2 2 2 2 +2xd 2 |? (42&)
2n(l-v)| 2 ~(x=d)’+y (x+d) +y  (x-d) +y ((x—d)2+y2)
Go 1 (x+d)’+y° (x+d)* (x—d)? y*(2d —=3x) +(x—d)*(2d — x)
Gw: —l 2 2+ 2 2 2 z+2d 2 ’ (42b)
2n(l-v)| 2 ~(x=d)'+y" (x+d)"+y" (x-d)' +y ((x—d)2+y2)
c,=Vv(c,+05,) (42c)
Go (x—d)y (x+d)y Yy -x*+d’

XY: 2 2_ 2 2 y 2
T | e vy Gy ey (xedy )

In Refs. [34,35] the elastic fields of wedge disclination parallel to the surface of a half-space were found with
different methods: using complex potentials[34] or with the virtual defect technique [35]. In the second method, to
fulfill the boundary conditions for stresses on the free surface the following virtual defects were introduced: image
wedge disclination of opposite sign placed at the point with coordinates (d,0) and the distribution of surface edge
dislocations with their Burgers vector being parallel to the free surface [35]. It is assumed that the elastic fields of
virtual defects havethe physical meaning only for adomain where real wedge disclinationisplaced, i.e. for the half-
space x < 0. In the following it will be demonstrated that the virtual defect technique is effective in the solution of
various boundary-value problems for disclinations. Here we only mention that the same approach was used to find
elagticfieldsin anisotropic half-space not only for wedge disclinations, but also for straight-linear twist disclinations
[34].

When analyzing the asymptotes of wedge disclination stresses at large distances from the free surface, i.e.
r =V(x2+ y?)>>d, thefollowing scaling behavior was discovered [4,36]:

Go d’
oy 42)

which isalike to the scaling law for the stresses of edge dislocations placed in the vicinity of afree surface.
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Fig. 9. Dipole of wedge disclinations near the internal boundary separating phases with different elastic properties.

Energies of isol ated wedge disclination and their ensembl es can be determined from Egs. (35)-(37) by passingto
the limit from disclinations in a cylinder to disclinations in a half-space as it is described in the beginning of this
Section. Thisagreeswith theresultsfound in Refs. [35,37] by direct cal culations based on Egs. (22). Inparticular, for
the energy E“ per unit length of singular wedge disclination parallel to a free surface of elastically isotropic half-
space one finds:

£ Gw’d’
NG 44
An(1-v) (44)
Comparing the energiesgiven by Egs. (32) and (44) we note the sametypical quadratic dependence on the parameter
of screening (R or d) and the different, as it should be expected, screening ability of free surfaces in cylinder in
comparison to half-space: the wedge disclination energy surrounded by the surface, i.e. in a cylinder, isfour times
lessfor R=d. It isalso natural that pair interaction of disclinationsin ahalf-space demonstrates non-central character
and depends on the distance for each of them to the surface [37]; the analysis of such interaction for the dipole
configuration is briefly discussed in the next Section.

5.2. Disclinations near interfaces

In accordance with variants of boundary conditions mentioned in Section 2.2 we consider two cases: wedge
disclinationsin the vicinity of (i) phase boundary or (ii) diding interface.

For thefirst case, wefollow the results of Ref. [38] wherethe el astic properties of wedge disclination dipolein the
geometry shown in Fig. 9 were investigated. It was found that for the case a. = 0 (dipole arm being paralldl to the
phase boundary with d being the dipole distance to the interface) Airy stress function that provides the fulfillment
of the boundary conditions of type C (see Egs. (8)) at the interface is written as
(i) forx<0:

e :%[(mdf +(1 - y)*Ylog((x+ d)* + (1 - y)°) +

B— A 2 2 A+ B 2 2 2
( (x—d) —Au+d)—-———a—y)jmg«x—d)+u—y))+
2 2
I=d (45a)
A+B-2 I—y}z

(I -y) +2(A-B)(x—d)(I - y) tan™ —
X_

1=d,

(i) for x>0

@ = Go [( A-B (x* —d?) +w((x+ d)’+(1- Y)z))mg((x"' d)* +(I - y)2)+
8rn(l-v,) 2 2

A+B-2 , 1I—y}
—(-y) +2(A-B)(x-d)(I - y)tan
2 x+d

I=d,

(45b)

1=d,
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where A and B are Dundurs’s coefficients [39]:

G -G, 5_ (3-4v.)G, - (3-4v))G,
G, - (3-4v,)G, (3-4v,)G, +G,

withG,, v, and G,, v, being elastic moduli for materials 1 and 2, correspondingly, asshownin Fig. 9.

In the case of a free surface (A=B=1), y@ vanishes and Eq. (45a) gives Airy stress function y® for wedge
disclination dipole in elastically isotropic half-space. From Egs. (45) one finds the stresses and other elastic fields
that completely obey the boundary conditions of Egs. (8).

For arbitrary combination of elastic constants, the elastic energy either for isolated wedge disclination or a
disclination dipolein two joined half-spacesis infinite because the screening of the phase boundary is not effective
enough and the elastic fields of such objectsare not localized. Still, with the help of the resultsfor stresses of wedge
disclination dipole at a phase boundary or at a free surface configurational forces acting in such system can be
determined. For example, the component of the force in the x-direction acting on the dipole shownin Fig. 9is[38]:

. Go’ _, acosa,
F*=———— (B-A)| 4acoso tan +
4n(l-v,)
d*-a’cos’ a , d+asna da’ (46)
2dlog———+2asinalog +4A ,
d*+a’cos’ a d+asina d*+a’cos’ a

where aishalf of the dipole arm and therelation |, - I, = 2acosa. is used. Asit was explored for stresses, with A=B=1
we find the force attracting a wedge disclination dipole to the free surface:

o Go’ da’®
« = . 47
n(d-v) d’ +a’cos’ a (47

I nteresting property of theforce de isthe existence of the maximum in the dependenceon FXd distance at d = ajcosa.
Theexpressionfor the attractiveforce wasfirst derived in Ref. [37], where the energy of wedge disclination dipolein
a half-space was found:

W Go’a’ 250 o+ l0g d*+a’cos’ a
= o+log— |.

2n(1-v) a’ (48)
This expression permits al so to determine the configurational momentum M¢:

. oW’ Go’a® 2d*+2a’cos’o—a’ .
M =— =— —— sin 2o, (49a)

oa, 2n(1—v) d”+a” cos a
fimme = -2 oo
= — ol. 49b

d»a T[(l_ V) ( )

which tends to bring the dipole in the orientation with minimum of energy with o = 0. For this orientation one can
analyze theinteraction between disclinationswhen they arein the dipole configuration. Theforcefor thisinteraction

is[37]:

£ ow* Go’a d’ 10g a’
=—- S + .
! d(2a) 2n@l-v)\ a’+d’ a’+d? (50)

Itiseasy to check that force FXd isalways attractive and reaches the maximum value for o = 0.3d.

The second example deal s with the interaction of disclinations with so-called dliding boundaries. It is assumed
that there exists an internal surface that does not support shear forces. This also means that shear stresses vanish
on such an interface. The analysis of the behavior of wedge disclinations placed in the vicinity of planar sliding
boundary of infinite or finite (asgivenin Fig. 10) extent was performed in Ref. [40]. It isworth to note that here the
well-posed el asticity problem was not formulated, instead the problem of the equilibrium of distributed edge disloca-
tionsin the field of the wedge disclination was investigated assuming such dislocations as carriers of diding.
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Fig. 10. Negative wedge disclination near the dliding
boundary. Virtual edgedidocationsresponsiblefor did-
ing and vanishing shear stresses in the selected part of
the interface.

Negative wedge disclination in the geometry shown
in Fig. 10 generates the following shear stressesin the
plane of the boundary:

Go dy
o =—" .
Yo2n(l-v) dP+y°

(51)

The pileup of edge didocationswith their Burgers vec-
tor being parallel to y-axiswill completely compensate
these stresses in the region of the interface -I<y<+ if
their distribution function f'(y) (the dislocation density
per the length of theinterface in y-direction) is:

P04 [ared )
Wb\/|2—y2 y2+d2 ' (52)

wherebistheinfinitesimally small magnitude of virtual
dislocation Burgers vector. For the sliding boundary of
infinite extent when | — oo the distribution function ac-
quiresthe simpler form:

" o d
() =———7.
by +d

(53)

With the help of the found distribution functions given
by Egs. (52) or (53) one can find the stresses of the
wedge disclination (or disclination configurations)
placed inthe material with sliding boundary, which will
be just superposition of the stress filed of the
disclinations in infinite media and stress field induced
by virtual edge dislocation pileup [40]. For example, for
the shear stress component that is of the most interest
in the case of infinite diding boundary we have:

Go
S
Y 2n(l-v)
(x+d)y yd(x’ -y’ —d”) (54)
(x+d) +y" ((x]+d) +y*)
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which obviously demonstrates the fulfillment of the
condition ny(x =0y)=0.

The interaction of wedge disclination dipoles with
dliding boundary demonstrates an unexpected feature
related to the dipole arm orientation with respect to the
boundary, see Refs. [40] and [4]. For two important di-
pole orientations (parallel and normal to the boundary)
for the forces we have:

£ _ Go’ g Ioga2+d2 a’
© o 2n(1-v) ¢ a+g) W

(54b)

Theanalysis of Egs. (54) shows that the dipoles having
anarm parallel to theinfinitesliding boundary will repel
fromit (F "' < 0) whereas the dipoles having a perpen-
dicular arm will be attracted (F,” > 0) to such an inter-
face.

5.3. Disclinations in the plate of a finite
thickness

For the sources of internal stresses, e.g. dipole of wedge
disclinations placed with arm 2ain aplate of finite thick-
ness 2t (see Fig. 11), boundary conditions of the type
defined by Eq. (5) must be met for the both surfaces, i.e.
for x=+t. The other parameters include positions (x,,y,)
and (x,,y,) of positive +m and negative - disclinations,
respectively. This boundary-value problem can be
solved asit was proposed in Ref. [41] by finding distri-
bution functionsf X(y), k=1+, 2+,1-,2- of virtual surface
edge didlocations, which are placed at the correspond-
ing surface of the plate and possess Burgers vector in
the directions being either parallel or perpendicular to
the surfaces of the plate. It appearsthat inthis case, one
cannot determine the distribution functions in the ana-
Iytical form (to the contrary to the case considered in
the Section 4.2), but only their Fourier transforms f* (s)~
Then, the stresses of adisclination dipolein aplate can
be found in the form of single integrals of f« (s):

1 We define the pair of Fourier transforms as:

(9 =1/ (V2m)[ vy ep-isydy ad y(y) = @/ V2m)[ i) episyds
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Fig. 11. Wedge disclination dipole in a plate of finite thickness. The line of disclinations are paralel to the plate
surfaces; f'**are distribution functions of virtual edge dislocations, which are introduced to fulfil boundary condi-
tions.

S (xy)=c (xy)+ [ 2 fH (96 (x s)explisy)ds (k=1+,1-,2+,2-), (55)
K
where cs:’(x,y) isthefield of adisclination in infinite medium (see Egs. (17)), c}iki(x,s) isthe Fourier transform of the
stresses of a probe dislocation in the k-th array.
Analytic expressionsfor the Fourier transformsincluded inrelation (55) were obtained in Refs. [38,39], they look
like
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e Gb
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where o is disclination strength, b is the magnitude of dislocation Burgers vector, G isthe shear modulus, v isthe
Poisson’s ratio;
u =ttx, S=¢&, 0, =(t£x)/t, 0, =(@{£x)/t, §, =y, /t, §,=Y,/t; H=exp(48)+
exp(—48)-165° -2, R =exp(4|5[)-85°+4|5|-1 R =exp(4|5))+4]|5]-1 R =exp(-2|§]) -
exp(2|8)) - 2|5 |(exp(-2|5]) +exp(2|5])), R, =exp(-2|5))-exp(2|5])-4|5|exp(2|3]), T, =88,
T, =exp(4|S))-4|8|-1 T, =2|S|exp(-2|S|) - 2| S|exp(2]|S]),
T, =exp(2|S))-4|S|exp(2|S[) —exp(-2 ] S).

Theenergy E"’" of the disclination dipolein the plate of finite thickness can be found by cal culating the mechani-
cal work doneinthe process of the dipol e formation or by applying general formulas of Egs. (22aand 22b). Thefirst
from the mentioned techniques leads to the following expression [41]:
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where m isthe number for the disclinationsin the dipole: m=1 for positive wedge disclination and m=2 for negative
one, correspondingly.

Analysis, see Refs. [4,41] showsthat theintegrationsin Egs. (55) and (58) inthe general case of the plate of finite
thickness cannot be performed analytically. However, it has been demonstrated in Ref. [42] that with the help of the
obtained formulas and using passages to the limits, e.g., when plate thickness tends to the infinity with disclination
dipole being kept near one of the plate surfaces, the analytical relations (givenis Section 4.1) for wedge disclinations
parallel to afree surface of elastic half-space are reproduced exactly.

Other limiting cases allow to investigate elastic properties of a single wedge disclination in the plate of finite
thickness. For thisone hasto assume that either one of the disclinations of the dipole comesto the surface of aplate,
i.e., X,=£t, or itsordinate tendsto infinity, i.e. y,—+o0. Then, the relations found for the stresses of adipole, Eg. (55)
give the stress field of an isolated wedge disclination in a plate. Comparison of stress distributions for wedge
disclinations with various character of screening: inacylinder, at afree surface, or in aplate showsthat in avicinity
of disclination line the stresses are only dlightly affected by boundary conditions; for example, in the core of a
positive disclination there is always compression. However, the position of neutrals (the contours at which the
stresses change the sign) and their configurations are uniquely determined by the body shape and the location of
the disclination in the body as it can be seen from the stress maps collected in Ref. [4].

The self-energy of adisclinationinaplate Ef can be calculated with the help of formulalike Eg. (58). Theenergy
ismaximal when disclination isplacedinthe center of aplate[41]:

Go’t’

E'=0182——.
2n(l-v)

(59)
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Fig. 12. Dipole of wedge disclinations with the lines of defects being normal to the surface of a half-space.

Comparing Egs. (59), (44), and (32) one concludesthat the energy for adisclination sitting in the plateis between the
energies of awedge disclinationin acylinder and onein ahalf-space when R=t=d. This obviously meansthat among
plane elasticity problem cylinder possesses the highest screening ability for wedge disclinations.

Presence of wedge disclinations in a plate induces another phenomenon, namely plate bending [4,41]. The
straightforward method to find the bending angle 6 of the plate that contains a wedge disclination dipole, is to
explorethework reciprocity principle (WRP), for details on WRP see Ref. [ 11]. According to WRP, thework of the
momentum with component M, (in the geometry of Fig. 11) required to bend the plate by the angle 0 isequal to that
of normal bending stresses c&z when forming disclination dipole in the plate:

M. 0= I d z(jwcrf (X)(x—=x)dx— I o (X)(x-x,)d x} (60)
‘ X x,

-0

where o%z =M/l with |, being acomponent of the momentum of inertia of the plate cross-section. Then, from Eq.
(60) for angle 6 wefind:

ezéwxz—&(l_&+>;>§+xzj_

5 ¢ (61)

Interesting and important observation follows form Eq. (61) regarding the bending of the plate with a single
disclination; the bending angle can be determined when one of disclinations of the dipole being placed on one of the
plate surfaces. Unlike the elastic fields that angle 6 will depend on the procedure of the disclination formation in the
plate and therefore cannot be found explicitly basing only on the position of a single disclination in the plate.

6. 3D ELASTICITY BOUNDARY-VALUE PROBLEMS FOR WEDGE
DISCLINATIONS

In this section, we present results for the solution of spatial elasticity boundary-value problems for wedge
disclinations. The necessity of solving of such class of problemsis dictated by a possible variation of the materials
properties along the disclination lines.

6.1. Disclinations normal to the surface of a half-space

To find elastic fields of wedge disclinations normal to the free surface of a half-space it is convenient to consider
again adipole configuration (Fig. 12), in which the positions of disclinationsin chosen co-ordinate system are given
by parametersy, andy,. Asinthe previous cases to satisfy the boundary conditions at the free surface set by Eq. (5),
the stresses G; of the dipole of wedge disclinations normally emergi ng the surface can be written as the sum of
stresses of the dipolein infinite medium o and additional field o, that needs to be determined:

o (%, ¥,2) = o, (X, Y)+0,(XY,2). (62)

In Ref. [43] the solution to the considered problem was found with the help of harmonic three dimensional
stress-functions [11]. In particular, additional stresses for disclination dipol e were obtained:
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| Gov rz(rz _ Z) _ Xz Z(l'z _ Z) _ X2 &=y,
- = m(—(l+ 2v)log(r, — 2) + ZZFZ(I’Z——Z)Z -(1-2v) (I’Z——Z)zj . ' (63a)
. Gov (-2~ (=)’ 2r-2-E-y° |
o - m(—(h 2v)log(r ~ 2) + 22 2 -(1-2v) 2 j . ’ (63b)
: Gov 2log(r —2)+2 AN
o =——| — - - ’
; P o(r, . . (63c)
o - Gov Xx(E-vy)(2z+(1- 2V)rz)|§:yz
v 2n(1-v) r(r— 2)° toy, ' e
L Gov (y-gz|”
v 2n(l-v) rz(rz _ Z)Z o ! (63e)
o - Gov Xz o
= TR (63f)

’
&=y,

where rf=x2+(§—y)2+22. Simple analysis shows that boundary conditions for stress components defined by Eq. (62)
aresatisfied identically, i.e. ¢ (xy,2)|,_,=0, &],(xy,2),_,=0, 5" (xy,2)],_,=0.

In general, thefieldsfor asingle wedge disclination that isnormal to afree surface differ significantly fromthose
of adefect in aninfinite medium. For example, from Egs. (18), (62), and (63) for the stresscomponent c;;l of anisolated
wedge disclination one can get:

(X, ¥, 2) G0z for r>z

GZZ v Yo = . > 7, 64
3n(l-v) r’ (64)

where as before r2=x2+y?. Unlike to the dependence given by Eq. (18c) this component does not diverge as function

of r; by contrast, it demonstrates fast decay. However, the components c;:j and G';; maintain their logarithmic

dependence onr. Thisfact and the dependence of elastic fields on co-ordinate z do not allow to define an energy of

wedge disclination per unit length.

6.2. Wedge disclinations in the plate of a finite thickness

To find the stresses of wedge disclinations being perpendicular to the surfaces of aplate (see Fig. 13, where dipole
configuration is shown) the technique of virtual dislocation loops can be explored [15,44,45]. Utilizing this tech-
nique, the families of prismatic dislocation loops and loops of radial Somigliana dislocations with distribution
functions * f."(c) and : f",(c), respectively, are introduced for two surfaces of a plate. In the adopted in Fig. 13
notations the upper left index (+ or -) designatesthe side of a plate, the upper right one (p or s) isresponsible for the
type of virtual loopsand the subscript (1 or 2) isanchored to thedisclinationin adipole, whereascisavariableradius
of the loops, and 2t is the thickness of a plate.

Then, the stressfield of wedge disclination dipolein the plate c:j(r,q),z) isrepresented asasum of the dipolefiled
inaninfiniteelastic medium c:(r) andthefield c:(r,q),z) generated by thedistributions of virtual circular dislocation
loops:

o (r.¢,2)=c (1) +c(r,9,2), (65)

where cylindrical coordinatesare utilized. Note that similar representationswere used in Egs. (55) and (62).
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Fig. 13. Dipole of wedge disclinations whose line are normal to the surface of the plate of finite thickness. To meet
boundary conditions distributions of prismatic dislocation loops * f." andradial Somiglianadisocation loops * £
are introduced.

Boundary conditions of Eq. (5) written with the help of Eg. (65) in terms of the above introduced distribution
functions of loop defects constitute the system of integral equations that can be solved by exploring the technique
of integral transformation. In contrast to the case considered in Section 4.3 where for disclination lines parallel to
plate surfacesthe Fourier transformis used, here for the solution the application of Hankel-Bessel integral transfor-
mation? becomes effective. It was found in Ref. [15] that Hankel transform “H_, of the dislocation loop distribution
functions =f P(c) (here we omit subscripts because of the symmetry of the problem)

“H, (B) = [ J,(Bo)" P()c dc, (66a)

“H, (B) = TJZ(Bc)(ifS(c)c)cdc (66b)

can befound explicitly in analytical form:

. )\ . ) 2 (1-2tB) exp(-2tp) -1
H, = H, ( ) Hl( j (67a)
oV v/ PB° 1+ (4B —exp(-2tp))exp(— 2tp)

H ="H (E)——+H (Ej__ﬂ t exp(—2tB)
oW T B L (4 - exp(-21B)) exp(-2tB) (67b)

InEgs. (66) and below inthetext J (c) are Bessel functions of argument ¢ and n=0,1,2...

Asfor the case of disclinationswith parallel orientation of their lineswith respect to plate surface (see Eq. (55)),
to find the stresses of virtual dislocation loops there is no need to have distribution functions themselves, but it is
enough to work with their Hankel transforms given by Egs. (67). Such an approach leads to the following formulas
for stressesc(r,j,2) [4,15]:

% = n V)%‘,( 1)“DJ rB)((2S +S,)H, +(2S,+S,)H,)pdp+
msz(@—@k)sz(rkB)(SzHl+S4H2)|3d|3}, (68a)

2A pair of Hankel-Bessel integral transforms are defined as: HV(K)=J:f(r)JV(7»r)rdr and
f(r)=["H,()3,(r)rd [46].
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Oy e o V)kZ::‘( 1)" 1{J.Jo(rk[3)((281+SZ)H1+(283+SA)H2)BdB_

cosz((p—(pk)j J,(B)(SH, +S4H2)[3d[3] (68b)
o SOV S gy 1]3 (rB)(TH, +T,H,)Bdp, (680)
2 o2nl-v) o
L D (=) sin2(e q;)jJ (rB)(SH,+SH,)pdp, (68d)
re 4 (1 V) ~ k 4" "2
G k-1
ot =3 (- sn2fe, - (P)IJ(VB)(QlHﬁQsz)BdB (68¢)
2n(l-v) =
G k-1
o -3 (1" sin2(o, - @)IJ(VB)(QlHﬁQZHZ)BdB (681)

2n(l-v) =

wherethe meaning of r, and ¢, (with k=1.2) becomes clear fromthe schematicsin Fig. 13 (note that these parameters
can be expressed via polar coordinates (r,p) and half of the dipole arm a’) and the following designations are
introduced:

S = (-1+ z8) exp(-zB) — (1+ (z— 2t)B ) exp((z - 2t)B),

S, =(1-2v—2zB) exp(-zB) + (1-2v + (z— 2t)B) exp((z - 2t)B),
S, =(2-zB)exp(-zB) + (2+ (z— 2t)B) exp((z— 2t)B),

S, =(-2+2v+zB)exp(-zB) — (2-2v + (z— 2t)B) exp((z - 2t)B),
T, = —(1+ 2B) exp(-2B) - (1- (z— 2t)B ) exp((z - 2t)P),

T, = ZBexp(-2B) - (z- 2t)Bexp((z - 2t)B),

Q, =-ZBexp(-zB) — (z—2t)B exp((z - 2t)p),

Q, = (-1+ ZB) exp(-7B) + (1+ (z— 2t)B) exp((z — 2t)B).

The found stresses of wedge disclination dipolein a plate can be tested for fulfillment of boundary and equilib-
rium conditions defined by Egs. (5) and (3), correspondingly. When disclination dipole arm tends to zero, the
relations of Egs. (68) make it possible to determine the stresses of an edge dislocation perpendicular to the surfaces
of aplate; thisunique result wasfirst reported in Ref. [44].

6.3. Wedge disclinations in bodies with spherical geometry

To solve elasticity boundary-value problems for wedge disclinations described above, we use again the representa-
tion of thefinal elastic field under question asthe sum of thesingular disclination elastic field (e.g. displacements u,’
and stresses o ) in infinite medium and an additional field (u,’, c:) that is responsible for the fulfillment of the
boundary cond|t|ons at the interfaces and/or external surfaces of the body. In cases of wedge disclinations placed
in the bodies with spherical free surfaces we follow the same methodology and find the solution in the form:

Gj(R,G,(p) = G;’(R,O,(p)+c5;(R,6,(p), (69)

where we assume symmetrical positioning of wedge disclinations with respect spherical surfaces asit is shown in
Figs. 14-16 and use spherical coordinate system (R,0,¢) with the origin in the point on awedge disclination line.
In spherical coordinates the stresses c;’ given by Egs. (17) or (18) acquire the other form:

Go
o, =——| —[1+2v+(-1+ 2v) cos 20] log(Rsin 0) + j
2n(1- v)( 1-2v (70a)
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@ ®)
Fig. 14. Wedge disclination (WD) inan elastic spherical layer (SL). (a) Introduction of apositive WD intothe SL; (b)
the WD with Frank vector » = e, inthe SL. The Cartesian (x,y,2) and spherical (R,0,¢) coordinatesare shown. Gis

the shear modulus and v is the Poisson’s ratio of the material of the SL.

Fig. 15. Wedge disclination (WD) in a bulk elastic sphere. (a) Introduction of a positive WD into a bulk elastic
sphere, (b) aWD with the Frank vector o = we, in the bulk sphere of radius a.

/_WD

Fig. 16. Wedge disclination (WD) with the Frank vector o = we, axially pierces aspherical pore of radiusa_in an

elastic medium.
. Go 1 i v
o, =—(—[1+ 2v + (1—2v) cos20] log(Rsin 6) + j (70b)
2rn(1-v)\ 2 1-2v
(70c)

. Gw i 1-v
., =—(|09(Rsm6)+ j,
2n(1-v) 1-2v
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Go
6, =———(1-2v)cosbsin6log(Rsino),
2n(1-v) (70d)

where0< R< o0, 0<0 <7, 0< ¢ < 2. Cartesian and spherical coordinatesarerelated by: x = Rsincosp, y = Rsindcosp,
z=cosh, R?=x2+y2+ 22, 0 = cosY(Z/R).

For thefirst time the solution for elastic fields and energy of awedge disclination in abulk isotropic sphere was
givenin Ref. [47]. We however follow the results of Ref. [48] where the solution for adisclination piercing ahollow
sphereisfirst derived and then special cases of a bulk sphere and a spherical pore are considered.

6.3.1. Disclination piercing a spherical layer

The procedure of theintroduction of awedge disclination, which goes through sphere diameter, in a spherical layer
(SL) withinternal and external radii a and a,, respectively, isshownin Fig. 14a The procedureisvery similar to the
Volterraprocess for awedge disclination in a cylinder that was described in detail in Section 1.

Duetothe chosen axial symmetry of the problem, therewill be no dependence of disclination elastic fieldson the
angle ¢ and the stress component c;. The elastic field, generated by the wedge disclination in the SL, must satisfy
the following four boundary conditions on the SL free surfaces:

9

| S
RR IR

G RR |R:

SN L
o= 0, o o™ 0, o |R:% =0, o, |R:ae: 0. (71a-d)
The solutions of the elastic problems of this type can be found through the universal equations describing the
stress-strain state for ahollow sphere subjected axia symmetricinternal and external loading [49]. Asitwasfoundin

Ref. [48], the stresses of the wedge disclination are written as:

2m-2

o - 2m -
ol =ol + ZGZ[Am(2m+1)(4m2 —2m-2-2v) (aﬂ) + 28 m(2m-1) (aB) -
m=0

(72a)

2C_m(4n’ +6m-—2v) (ER)’(M + B, (2m+1)(2m+2) (ER)(M} P, (cos6),

0 2m 2m-2
ot =0 + ZGZ[—Am(2m+1)(4m2 +8M+2+2v) (aﬂ) — 4B ' (aﬂ) +
m=0

e

2C_m(4m’ —8m-1+ 2v) (g)mm D, (2m+1)’ (%‘)(M} P, (cos6) -
(72b)

—(2m+1) -

R —(2m+3)
+Dm(—) } P, (cos0)coto,

Gy [ A (2m:5- @)(%)m+ém(%)m+ G (2mi 4 @)(g) E

o 2m 2m-2
o =o’ + ZGZ[Am(2m+1)(2m— 2-2v—8mv) (aﬂ) + 2Bmm(a5) +
m=0

e

- —(2m+1) - —(2m+3)
2C_m(2m+3-8mv —2v) (%‘) ~D_(2m+1) (5) } P (cosf)+

(72c)

mi[Am(m 5 @)(%)2m+ém(%)m+ ¢ (2m+ 4 @)(5)7(M+|5m(§)m3) } P! (coso)cotd,

2m-2

[ am
ot =c7, + ZGZ[Am (4m® + 4m—1+ 2v) (aﬂ) +B (2m-1) (aB) +
m=1

. —(2m+1; - —(2m+3 72d
C (4m’ —2+2v) (5) e B_(2m+ 2)(%‘) ( )} P (cos6), (72d)

where P (t) are the Legendre polynomials and Pﬂ1 (t) are the associated Legendre polynomials; t = cos,
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§ 2.+ P (t)  dP (cos®)
Pt)=(Da-t") - = ,
dt de ) } ) )
P'(cost) =0 and the normalized dimensionlessterms A = A a’",B =B a"*;C_=C a “"”; D, =D a """,
A =A;D,=D,a" areused.
Initsturn, the coefficients A , B, C_ , and D_for m> 1 are determined from the following algebraic system of
equations, which holds for any boundary-value problem for spherical layer with boundary conditions of Egs. (71):

o, /(2G)+ A (2m+1)(4m’ —2m-2-2v)a™" + B 2m(2m-1)a™* -

73a
C_2m(4m’ +6m-2v)a ™ + D_(2m+1)(2m+2)a “"? =0, (733)
6o 1(2G)+ A (2m+1)(4m’ —2m—2-2v)a’" + B 2m(2m-1)a’"* —
73b
C_2m(4m’ + 6m-2v)a “™ + D_(2m+1)(2m+2)a_*"? =0, (73b)
T 1(2G)+ A (2m+1)(4m° + 4m-1+2v)a™" + B_(2m-1)a™"* +
73c
Cm (4m2 _ 2+ 2V)a1*(2m+1) _ Dm (2m+ 2)a|7(2m+3) _ O, ( )
0 /(2G) + A,(2m+1)(4m" + 4m—1+2v)a" + B, (2m-1)a" " +
(73d)

C_(4m° -2+2v)a®™ —-D_(2m+2)a *™? =0.

The degenerate case of m=0 specifiestwo remaining and contributing to Egs. (72) coefficients:

3 e 3 i 3.3 e i
8,06, -a0, D =aea| (GO_GO)

= 3 3 an 0 3 3y
4G(@A+v)(a, —a’) 4G(a, -a)

A

According to the results presented in Ref. [48], the only quantities that account for the presence of wedge
disclinationin thelayer with the magnitudes of internal a and external a_ radii of the spherical layer are 6, o, &, o),
T, and 1

o __ GO [2(1+v)lna 2D o gy 2o }
) =——| — - - ,
° or-v)| 3 e g 1-2v (742)

ie Go  (16-107v+30(2v-1iIn2a )
c' = . :
"o2n(1-v) 45

: (74b)

_ Go  (2v-1)(-31+30In2a, )
 2n(1-v) 90 '

ie
‘Cl

(74c)

The other coefficientswith m>1 entering in the system of Egs. (73), i.e. cim, c., r‘m, and 1, include asthe parameter
only wedge disclination strength w:

ie Go 1-2v)(2m-D)(m+1)(4m+1) (dm+1)
G, = [ - }, m=234.. (75a)
2n(l-v) | 2(m-1)m(2m+21)(2m+ 3) 2m(2m+1)
e Go (1-2v)(4m+1) =213 4. (75b)

T onl-v) 2(m-1)m2m+1)(2m+3)’

The set of thelisted Egs. (72) to (75) allowsto investigate the distribution of mechanical stressesin aspherical layer
with awedge disclination that was demonstrated on the example of stress mapsin Ref. [48].
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6.3.2. Disclination in a bulk sphere

In the case of awedge disclination in abulk sphere (see Fig. 15) the solution of elasticity boundary-value problem
can be found utilizing formulas from previous Section and assuming a=0 and a,=a with a being sphere radius. For
a sake of completeness, we write here the stresses ci?s according to the formulas given in Ref. [48]:

w© n m-2
6E= oL+ 2BY [Am (2m -+ 1)(@dm’- 2m- 2 _2V)(B) i 2E”3mm(2m_1)(B) }Pm(cosﬁ), (762)
a a

m=0

00

o 2m 2m-2
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m=0 a a

© - 2m ~ 2m-2 76b
ZGZ[Am(2m+5—4v)(§) +Bm(§) }F’;m(cose)cote, (76b)
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oo =0+ ZGZ[Am (4m’ + 4m-1+ 2v)(§) + Bm(Zm—l)(E) } P, (cosb), (77d)
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~ c, ~ (oc_—2mr )
A=——t— A= P
AG[1+ v + 2m(1+ 2m+ 2v)]

4G(1+v)

od B - (2v—1+4m1+m))c_+2(1+v—4m’ + m(3+2v))t
" 4G(2m—-D[1+ v + 2m(1+ 2m+ 2v)]

(m=1)withc_and o, defined by Egs. (74) and (75) by substituting a, with a.
We notethat elasticity solution for awedgein anisotropic bulk sphere were giveninthe other formin Ref. [47] where,
in addition, the expression for elastic energy of disclinated sphere was provided:

EBS —
6 2m(m+1)(2m+1)(2m+3)° (4m’ + 2m(L+2v) +1+v)

C 2n(1-v)

Go’d’ {1 - (4m+3)(8v'M’ +2m(5v* +3v —1) + (L+v)(1+ 2v)) J
' (78)

6.3.3. Disclination running through spherical cavity

The solution for stresses c;’ of awedge disclination intersecting a spherical cavity (pore) of radius a, (seeFig. 16)
can be extracted from general formulas of Egs. (72) for stresses of adisclinationin aspherical layer by setting a = a,
and a_= oo.

The other straight-forward way to get stresses csi:.’ that satisfy the boundary conditions on the pore free surface
was given in Ref. [45] where the result was written as:

£ ~ —(2m+1) - —(2m+3)
c;R= Ot ZGZ‘[ZCmm(4m2 +6m-2v) (%) +D_(2m+1)(2m+2) (%) }F’zm (cosH), (79a)
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I , C, = an W=
° 4G 4G (1-v+2m(1- 4m- 4m’)) AG(1+m)(1- v +2m(1- 4m-4n’))

for (m> 1) with o” and<,"” defined by Egs. (74) and (75) by substituting a, witha .

One may note that the formulas written above have arestricted physical meaning because there is no screening
for disclination elastic filed at large distances from the pore and logarithmic divergence of disclination stresses
remains.

6.4. Conic disclinationsin an elastic sphere

Considering a bulk sphere, we can imagine another defect — a conical disclination, which formation is described by
a procedure being very similar to the Volterra process for a wedge disclination in a cylinder. Localized conical
disclination isintroduced in a sphere by cutting and removing a cone of solid angle y with the subsequent contrac-
tion and gluing of the surface of the conical dimple along theradius of the sphere asshowninFig. 17a. Alternatively,
an additional solid conus can be inserted in a solid sphere. In the first case we have a positive localized conical
disclination, and in the second — a negative one. Plastic strain (eigenstrain) for a positive conical disclination hasthe
following form:

g, =&, =—x5(cos®—cosh,)d(¢p—¢,)H(a-R), (80)

00

where (&) isthe Dirac delta-function, H(2) isthe Heaviside step function, (R,0,¢) isthespherical coordinate system,
0, and @, are the angle coordinates of the gluing radius, a is the radius of the sphere.

Elastic fields for such conical disclination can be, in principle, found exploring the general approach for
axisymmetrically loaded sphere [49]. However, till now the problem for localized conical defect has no published
solution. It should be noted that thissolution in caseit will be found, will demonstrate singularity of stressand strain
fields along the sphere radius but not only in the sphere center. This means that, following our classification,
localized conical disclinationisalinear defect.

Asan dlternative to thelocalized conical disclination, the authors of Ref. [50] have described another defect that
can be defined by considering asphere with adeficit in solid angle y,,., whichis spread uniformly through the entire
sphere, see Fig. 17b. Such a defect can be visualized as a set of infinite number of infinitesimally thin empty radial
cones with solid angle dc each. Then each of the cones is subjected to the procedure that was described in the
beginning of this section providing the following plastic strain distributed uniformly through the whole volume of
the sphere:

00

&, =&, =X H(@-R). (81)

We name such adefect asastereo disclination or Marks-Yoffe (MY) disclination [28,51-53]. The stressesfor MY
disclination are derived from Eq. (81), they have to satisfy boundary conditions on the free surface of a sphere; for
thefirst timethey were givenin Ref. [50]:

4Gy 1+v. R
% MY

Op =—— ——log—, 82a
i 3 1-v a (823)

Wy w 4Gy, 1+v R 1
=——| - (82b,c)

" w0 og—+—
3 1-v a
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(b)
Fig. 17. Conical disclinationsin a bulk sphere. (a) Procedure of formation of singular conical disclination (CD) of

strength y in an elastic sphere, (b) distributed conical disclinations — stereo or Marks-Yoffe (MY disclination of
strength ., () MY disclination in atwo-phase sphere.

Then, the stored elastic energy EMY associated with the stressfield of MY disclination is:

8nG 1l+v
EMY — XZ a3. 83
27 1-v ™ (83)

Theelastic propertiesof MY disclinationin atwo-phase elastic sphere (see Fig. 17¢) were analyzed in Ref. [28],
where the following formulas for stresses and elastic energy of this defect were found:

(i)forR<a:
- 41+v, R
O = Ohw | = log—+
{3 1-v, a
G,(1+v,)1+v,)a log a (84a)
G,(1-2v,)A+V,) (& - & )+ G,(L-2v,)(A1+ V)& + G, 1+ v,) 1 +V,)a a |

41+ R 1
G:é” = (5:::1 = G1XMY |:5 1_ :1 (Iogg"rgj'i‘
1

G,(L+v,)(A+v,)a o } (84b,c)

G,(1-2v)@+v,) (& - a ) + G (1-2v,) 1+ )& + G (L+v)(1+V,)a 0 a,
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(i) for a <R<a;

41+ R R-aa R
o’ =Gy, {g A (Iog—+—a2islog—j+

RR

1-v,\ "a a-a R "a L
G, (1+v,)1+Vv,)a a(a-R )logi (853)
G,(1-2v)(1+V,) (& -a )+ G,(1-2v,)A+v,)& + G (1+v,)A+v,)a R (a-a') a, |

41+ R R-aa’ R 1
GgﬂeYz _ Grf =Gy |:§ v, (log—-‘r " aj iglog—+zj_
Ve a, a-aR a

G, (L+v,) L+ v,)a’ a(al+2R’) eﬂ (85b,c)

log— |,
G,(1-2v,)(A+V,) (& -a] )+ G (1-2v,)A+v,)& + G (L+v,)A+v,)a 2R’ (a - &) ? a,

X

e _ 816, . ol 1+v, a-a L G113+9 a
- MY 2 3 3 3 3
27 1-v,\ & 1-v,. G, a, a -a
3G,(L+v,)(1+ v,)a 1+v, jlogz a } (86)

G, (- 2v)(1+v,) (& - & )+ G,A-2v, )1+ V)& + G,A+v)A+v,)a 1-v, )  a

where a, isthe radius of the spherical phasel and a, isthe external radius of the spherical layer of phase 2, while G,
v,and G,, v, are used to denote elastic moduli for phases 1 and 2, respectively.

Obviously, rather cumbersome expressions (84) and (86) transform to simpler formulas (82) and (83) making
a,=a =aoralowingG,=0.

7. APPLICATIONS

In thissection, we present theinformation in brief on the use of disclination modelsin modern Materials Science and
Solid State Physicsto explain or even predict various phenomenain 3D and 2D crystalline and amorphous solids.
The emphasisis made on the models exploring the properties of straight wedge disclinations. We only designate the
areas of application of the disclination approach providing the relevant references. Detailed information on the
subject can be found in the referred articles, but also in a number of books[4,5,54-57] and reviews [6,9,10,58-62]
published during last four decades.

7.1. Disclinations and rotational plasticity

For thefirst time, theideato use wedge disclinationsin explanation of crystal plasticity phenomenawasgivenin Ref.
[63] in application to deformation twinning. After that, twins were modelled with help of disclination dipoles and
quadrupoles [64-66]. Important feature of all the referred works is an attempt to relate rotation (inclination) of
crystallographic planes peculiar to twinning with the rotational defects — disclinations.

In general, rotational effects were observed in crystal plasticity starting the first application (in the first quarter
of the last century) of X-raysto the analysis of crystal structure evolution in the course of plastic deformation; for
historical survey the readers can be addressed to the Section 3 of Ref. [4]. In the 1970-80s this phenomenon was
analyzed in detail for metals subjected to large plastic deformations, where it got the name — fragmentation [55]. It
was argued that partial wedge disclinations play acrucial roleinfragmentation initiation [55,56,70-75].

Animportant result was the explanation of the development of so-called reorientation bandsin crystalsbased on
the model of disclination dipole motion [5,76,77]. This model with modifications was successfully used in the
analysis of kink band nucleation and propagation in materials [54,58,78,79] including those with layer or fiber
structure [80-83]. Kinking and twining phenomenahave alot in common; they both are realized when the operation
of dislocation dlip systemsin thedirection of the acting shear stressisprohibited or hindered. The differenceisinthe
fact that the misorientation of crystal parts resulting from twinning is strictly defined by crystallographic constrains
whereas for kink (and reorientation) bands misorientations dependend on the conditions of mechanical loading.

The models exploring propertiesof wedge disclinations were applied in explanation deformation mechanismsin
polycrystals with nanoscal e grains (al so known as nanocrystalline material s or nanocrystals) and unltrafine-grained
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materials[56,59,84-90] wheredisclination related work-
hardening becomesan important feature[89-94]. Finally,
of great importance are the disclination description of
deformation mechanismsin rock materials[95] and the
involvement of disclinations in the explanation of
superplastic behavior of ceramics[96].

7.2. Disclinations and grain boundaries

We start this section with the citate “One of the main
reasons is that the disclination is a rotational defect
while the didocation is a trandational defect. A grain
boundary, being arotational defect, should be described
more simply by disclinations” taken from Ref. [97], where
it was proposed to model high-angle tilt grain bounda-
ries (GBs) as chains of alternating sign wedge
disclinations and to calculate in such a framework the
energy of GBsin dependence of the misorientation (tilt)
angle. Note that the same article [97] did present the
compact formulasfor dastic fieldsand energies of inter-
acting wedge disclinations.

Later on, thedisclination model wasmodified in Ref.
[98] to find the energies of tilt GBs between so-called
cusp misorientations, for which GBs possess local
minima of energy because of their preferable atomic
structure. The next step in applying disclination ap-
proach to the analysis of GB properties was accounting
for structural units — the elements of GBs of finite length
[99-102]. Thedisclination-structural units (DSU) model
was then combined with atomistic simulationsto cal cu-
late GB energiesfor various materials starting from the
potential of interatomicinteractions[103-106]. Based on
DSU model theauthorsof Ref. [107] developed aunique
approach for predicting the properties (elastic fieldsand
energy) of so-called nonequilibrium grain boundaries.
Nonequilibrium boundaries demonstrate excess energy
for the prescribed average misorientation depending on
the character of disclination dipole distribution in the
planeof aGB. In Refs.[108-110] theideaon disclination
mediated nonequilibrium state of GBs was extended to
so-called quasi-periodic GBsand GBs of finite extent.

The other important elements of the defect structure
peculiar to conventional crystals but also nanocrystals
— triple junctions of GBs, in many cases demonstrate
wedge disclination counterpart. It was clearly demon-
srated in Refs. [55,57,72,111,112] that nonuniformity and
anisotropy of plastic deformation in neighboring grains
lead to the formation of disclinationsin GB junctions.
The strength of such defects that we designate as
Rybin’s disclinations depends on the crystallographic
orientation and intensity of dislocation dlip in each of
grains adjusting to the GB junction.

Junction disclinations were recognized to be respon-
sible for the initiation of fragmentation in polycrystals

[55-58,70-75,111-113] and for grain refinement for achiev-
ing nanoscale grain size in the course of severe plastic
deformation [59,114-117]. In the previous Section we
have already mentioned therole of disclinationsin con-
trolling mechanical properties of nanocrystalline mate-
rials[59,84-90]; here we can only note that disclinations
there are at most junction located defects. The evolu-
tion of junction wedge disclination configurations in
nanocrystyalline materials were studied in Refs.
[118,119]. Finally, the techniques for identification of
junction disclinations from the transmission electron
microscopy and X-ray diffraction data were proposed
inRefs. [120] and [121], respectively.

7.3. Crack nucleation at disclinations.
Diffusion in an dastic field of
disclinations

Various configuration of wedge disclinations serve as
strong sources of tensile stresses either in the vicinity
of their cores or even at some distances depending on
disclination sign and the character on boundary condi-
tions. Therefore, disclinations can be considered as
potential placesfor fractureinitiation in solids.

First disclination models for microcrack nucleation
inthe elagtic field of wedge disclinations were proposed
in Refs. [122,123], where the fracture mechanics analy-
sis was performed accounting for internal stresses be-
ing peculiar to various disclination dipole and
guadrupole configurations. In the following studies ex-
ternal loading was included in consideration asit usu-
ally done when analyzing critical conditions for crack
opening inthevicinity of stress concentrator. Crack ini-
tiationinloaded [124] and unloaded [ 126-128] disclinated
cylinder (containing anegative wedge disclination) was
considered using analytical models [124-126] and mo-
lecular dynamics(MD) smulation[127,128]. The crack
behavior at various disclination dipole configurations
inloaded infinite elastic mediawas studied in Refs. [129-
131]. Other modelsfor crack formation in the presence
of disclinationsincluded various aspects of disclination
screening [132-134] and blocked deformation twins
[135,134].

Wedge disclinations al so contribute to the processes
of diffusion in crystalline solids. For the first time the
problem of stationary diffusion of point defectsin the
elagtic field of a single wedge disclination was posted
and solved in Ref. [137]. After that diffusion related ef-
fectswere analyzed for disclinationswith various physi-
cal applications[138-141]. Asaresult of vacancy diffu-
sion, a cavity can be formed in the core region of posi-
tive disclination in a cylinder [142] or Marks-Yoffe
disclinationinasphere[142,143].
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7.4. Disclinations in pentagonal rods and
icosahedral particles

Two last mentioned in the previous Section references
aready deal with micro-objects demonstrating unusual
for crystalline solids five-fold symmetry. It was argued
asearly asinthe beginning of 1970s[144,145] that such
objectsareformed dueto multipletwinning in FCC crys-
tal lattice and the presence of wedge disclinations. Fol-
lowing these ideas, it was proposed to model pentago-
nal micro- and nanorodsasacylinder withasingle posi-
tivewedge disclination [28,51,144] and icosahedral mi-
cro- and nanoparticles — as a bulk sphere either with six
wedge disclinations [51] or with Marks-Yoffe stereo
disclination [50,51].

Knowledge on elastic fields and energies of
disclinated cylinder and sphere allowed to investigate
and to predict many structural features being peculiar
to pentagonal micro- and nano-objects, for areview see
Ref.[51]. Themain observation that canbewell explained
on the basis of disclination approach is the manifesta-
tion of various relaxation processes in the structure of
pentagonal particlesand rodsemerging withtheincrease
of their diameter [ 146-148]. Theserelaxation processes
werethentreated infull detailsfor theformation in pen-
tagonal objects additional dislocations [149-151]
disclinations [152,153], cracks [154], or lattice-mis-
matched surfacelayers[52,53,155,156].

7.5. Disclinations and amor phous state

Wedge disclinations are recognized to be essential ele-
ments of internal structure of glasses and amorphous
solids[157-162]. They areresponsiblefor eimination of
long-range tranglational periodicity peculiar to conven-
tional crystals and constitute themselves in the appear-
ance of odd-member rings of atomic bonds.

Elastic properties of disclinations were explored in
calculating the difference of internal energy between
amorphous and crystalline state [26], in the analysis of
flow stress of metallic glasses[163], and inthe analysis
of the structure of crystal-glass interfaces [164].

7.6. Domains in ferroelastic films

Filmand layers of various crystalline materials may ex-
hibit phase transformation under mechanically con-
strained conditions when they are deposited on the
substrate [165]. If the phase transformation isaccompa-
nied with achange of the symmetry of elementary crys-
tal cell, elastic domain structures develop in the film
interior, e.g. seeRefs. [166,167].

To analyzeimportant features of such domain struc-
turesincluding the dependence of the domain structure
period on the film thickness a number of disclination

based models has been developed [168-177]. In these
models, the effects of mutual disclination screening in
multipole configurations aswell asdisclination interac-
tionswith film free surface were taken into account.

7.7. Wedge disclinations in graphene

In graphene — 2D material with a pristine crystal struc-
ture made of carbon atom hexagons, wedge disclinations
arenatural defectsthat changelocal symmetry of atomic
rings from six-fold to five- or seven-fold and even to
four- or eight-fold [24,60].

Disclinations were used in analyzing the properties
of carbon allotropes: fullerenes[178], nanotubes[179],
nanocones[180], and graphene[60] exploring both con-
tinuum [181-183] and atomistic [ 184-187] approaches.
Useful results were delivered when modeling with the
help of disclinations the properties of grain boundaries
(GBs) and interfaces in graphene that included the de-
seription of non-equilibrium GBswith excessenergy [182]
and zero-misorientationinterfaces[187] aswell aswhen
analyzing crack initiation at disclinated GBs[188]. In
last decade, pseudo-graphenes — planar graphene allo-
tropes with periodically distributed disclinations, at-
tracted special attention of researchers [189,60,61]. A
remarkable fact on pseudo-graphenes is that they fist
predicted only theoretically were recently experimen-
tally synthesized [190].

8. SUMMARY AND CONCLUDING
REMARKS

In this review, we have reported on the elastic proper-
ties, e.g. elagtic fields and elastic energies, of straight-
linear wedge disclinations in the cases of their interac-
tion with a free surface of various geometries: planar,
cylindrical, and spherical ones. As a starting point the
solutionfor elagtic fieldsgenerated by an isolated wedge
disclinationinaninfinite elastically isotropic continuum
have been used. This solution has no direct physical
meaning but can be used for construction of the fields
of screened disclination configurations: wedge
disclination dipoles and quadropoles and dislinations
in the bodies of finite extent.

The following boundary-value problems of plane
eladticity for single wedge disclination and their ensem-
bles have been considered: disclinations parallel to a
free surface of ahalf-space, disclinationinthe plate of a
finite thickness, and disclinations in uniform and two-
phase cylinders. In addition, the interaction of wedge
disclinations with interfaces have been addressed.

The solutions of three-dimensional elasticity prob-
lem have been given for wedge disclinations, whose
lines are perpendicular to afree surface of ahalf-space,
or to the surfaces of the plate of afinite thickness. For
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bodies with spherical boundaries the cases of bulk and
hollow spheres, aswell asdisclination piercing aspheri-
cal porehave been analyzed. For uniform and two-phase
bulk spherethe elastic properties of Marks-Yoffe stereo
disclination have been also delivered.

Finally, possible applications of the elasticity solu-
tions for wedge disclinations have been discussed. It
has been demonstrated that the disclination properties
become acontrolling factor when considering rotational
plasticity in solids, grain boundariesand their junctions
in conventional polycrystals and nanostructured mate-
rials, crack nucleation and initiation of ductile fracture,
pentagonal rods and icosahedral micro- and
nanoparticles, amorphous solids and glasses, domains,
and twins in ferroelastic films adjusted to a bulk
substrate, and defects in graphene.

Except isotropic linear elagticity moreinvolved cases
for materials properties were probed when studying the
properties of wedge disclinations. Elastic anisotropy was
takeninto account in Refs. [191-197] whereas nonlinear
elasticity accounting both for geometrical and physical
nonlinear effectswasused in Refs. [198-202] infinding
disclination elastic strains and stresses. Other variants
of elasticity models applied to wedge disclinations in-
cluded exploration of gradient elagticity [203,204], con-
sideration of surface/interface stresses[205,206], or the
analysisintheframework of micropolar elasticity [207].

In conclusion, itisworthto notetherelation of wedge
disclinations to singularities of physical fields of vari-
ous nature. In this connection, gauge theory [208] and
topological approach [209] can be used for the analysis
of the media with disclinations. Moreover, the analo-
gies with general physical theories of Macro- and
Microworld can be established [210].
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